2017年中国农业大学生物学院701数学(农)之概率论与数理统计考研题库
● 摘要
一、证明题
1. 设随机变量
(1)(2)
【答案】(1)设所以当即
时,
的密度函数为
即(2)因为以
由此得
所以(X , Y )的联合密度函数为
这说明X 和Y 是相互独立的标准正态随机变量.
2. 设
是取自二维正态分布
的一个二维样本, 记
, 所以
又因为
所
时,
和
则
的密度函数为
则
所以
当
与
相互独立, 且都服从(0, 1)上的均匀分布, 试证明:
是相互独立的标准正态随机变量.
试求统计量【答案】容易看出
的分布.
仍服从正态分布. 且
所以另外,
类似于一维正态变量场合, 可证与相互独立。且
于是根据t 变量的构造可知
这就是我们要求的分布.
3. 设
【答案】若
, 证明:
服从贝塔分布, 并指出其参数.
, 则X 的密度函数为
由
在
上是严格单调增函数, 其反函数
为
Z 的密度函数为
整理得
这说明Z 服从贝塔分布
, 其两个参数分别为F 分布两个自由度的一半.
4. 投掷一枚骰子,问需要投掷多少次,才能保证至少有一次出现点数为6的概率大于1/2?
【答案】设共投掷n 次,记事件则
由
得
两边取对数解得
所以取n=4,即投掷4次可以保证至少一次出现点
为“第i 次投掷时出现点数为6”,i=l,2. …n.
数为6的概率大于1/2.
5. 设二维随机变量(X , Y )服从单位圆内的均匀分布, 其联合密度函数为
试证:X 与Y 不独立且X 与Y 不相关 【答案】先求边际密度函数
所以由又因为
和
知X 与Y 不独立.
在对称区间上是偶函数, 故
从而
所以X 与Y 不相关.
6. 设数为
是来自均匀分布
其中
的样本,的先验分布是帕雷托(Pareto )分布,其密度函是两个己知的常数.
(1)验证:帕雷托分布是的共轭先验分布; (2)求的贝叶斯估计. 【答案】(1)同时成立,必须
与
的联合分布为
所以的后验分布为
要使
与
这是一个参数为
与
的帕雷托分布,因此帕雷托分布是的共轭先验分布.
(2)若选用后验期望估计,则
相关内容
相关标签