当前位置:问答库>考研试题

2017年中国农业大学生物学院701数学(农)之概率论与数理统计考研题库

  摘要

一、证明题

1. 设随机变量

(1)(2)

【答案】(1)设所以当即

时,

的密度函数为

即(2)因为以

由此得

所以(X , Y )的联合密度函数为

这说明X 和Y 是相互独立的标准正态随机变量.

2. 设

是取自二维正态分布

的一个二维样本, 记

, 所以

又因为

时,

的密度函数为

所以

相互独立, 且都服从(0, 1)上的均匀分布, 试证明:

是相互独立的标准正态随机变量.

试求统计量【答案】容易看出

的分布.

仍服从正态分布. 且

所以另外,

类似于一维正态变量场合, 可证与相互独立。且

于是根据t 变量的构造可知

这就是我们要求的分布.

3. 设

【答案】若

, 证明:

服从贝塔分布, 并指出其参数.

, 则X 的密度函数为

上是严格单调增函数, 其反函数

Z 的密度函数为

整理得

这说明Z 服从贝塔分布

, 其两个参数分别为F 分布两个自由度的一半.

4. 投掷一枚骰子,问需要投掷多少次,才能保证至少有一次出现点数为6的概率大于1/2?

【答案】设共投掷n 次,记事件则

两边取对数解得

所以取n=4,即投掷4次可以保证至少一次出现点

为“第i 次投掷时出现点数为6”,i=l,2. …n.

数为6的概率大于1/2.

5. 设二维随机变量(X , Y )服从单位圆内的均匀分布, 其联合密度函数为

试证:X 与Y 不独立且X 与Y 不相关 【答案】先求边际密度函数

所以由又因为

知X 与Y 不独立.

在对称区间上是偶函数, 故

从而

所以X 与Y 不相关.

6. 设数为

是来自均匀分布

其中

的样本,的先验分布是帕雷托(Pareto )分布,其密度函是两个己知的常数.

(1)验证:帕雷托分布是的共轭先验分布; (2)求的贝叶斯估计. 【答案】(1)同时成立,必须

的联合分布为

所以的后验分布为

要使

这是一个参数为

的帕雷托分布,因此帕雷托分布是的共轭先验分布.

(2)若选用后验期望估计,则