当前位置:问答库>考研试题

2017年中国农业大学水利与土木工程学院701数学(农)之概率论与数理统计考研导师圈点必考题汇编

  摘要

一、证明题

1. 试分别设计一个概率模型问题,用其解答证明以下恒等式

(1)(2)(3)

【答案】设计如下的试验,计算相应的概率,即可证得相应的恒等式.

(1)口袋中装有N 个球,其中m 个为白球. 从中每次取出一球,不放回. 试求迟早取到白球的概率.

因为袋中N 个球中只有m 个白球,在不放回抽样场合,可能第1次抽到白球,或第2次抽到白球,……,或最迟在N-m+1次必取到白球,若记

为第k 次取到白球的概率,则有

对上式两边同乘N/m即得(1). 而(2)(3)两个等式可在如下设计的试验中获得证实. (2)口袋中装有N 个球,其中m 个为白球. 从中每次取出一球,若取出白球,则放回;若取出的不是白球,则换一个白球放回. 试求迟早取到白球的概率.

(3)口袋中装有N 个球,其中m 个为白球. 从中每次取出一球后放回,若取出的不是白球,则不仅放回,且追加一个白球进去. 试求迟早取到白球的概率.

2. 若 试证

【答案】由

所以得

所以

第 2 页,共 37 页

由此得

3. 设随机变量X 与Y 相互独立, 且方差存在。证明:

【答案】

4. 设X 为仅取正整数的随机变量,若其方差存在,证明:

【答案】由于其中

代回原式即得证.

5. 设

是来自几何分布

的样本, 证明

是充分统计量.

其分布列为

在给定T=t后, 对任意的一个样本

, 有

存在,所以级数

绝对收敛,从而有

【答案】由几何分布性质知,

第 3 页,共 37 页

该条件分布与无关, 因而

是充分统计量.

这个条件分布是离散均匀分布, 可用等可能模型给其一个解释:设想有n —1个“1”和t 个“0”, 把它们随机地排成一行, 并在最后位置上添上1个“1”, 譬如

这n 个“1”把此序列分成n 段, 每段中“0”

的个数依次记为且

我们指出, 此种序列共有

, 这就是在

这里诸服从几何分布,

, 而每一个出现是等可能的, 个(这是重复组合)

给定后

的条件联合分布.

即每一个出现的概率都是

这个条件分布还表明:

当已知统计量(

的值t 后, 就可按此条件分布产生一个样本

), 它虽与原样本不尽相同, 但其分布相同. 在功能上这等价于恢复了原样本. 这就是充分

统计量的真实含义.

6. 设事件A ,B ,C 的概率都是1/2,且P (ABC )=+P(AC )+P(BC )-1/2.

【答案】因为

证明:2P (ABC )=P(AB )

上式移项即得结论.

7. 设二维随机向量(X , Y )服从二维正态分布, 且

证明:对任意正常数a , b 有

【答案】记

由条件知p<0, 所以

由此得

第 4 页,共 37 页