2017年常州大学量子力学(同等学力加试)复试实战预测五套卷
● 摘要
一、计算题
1.
若有已归一化的三个态交,归一的新的态矢量
【答案】因为设由
所以
和
和]
贝IJ :
得:
同理,设由
代入上式,得:
故:
2. 假设一个定域电子(忽略电子轨道运动)在均匀磁场中运动,磁场S 沿轴正向,电子磁矩在均匀磁场
中的势能表示
;
这里
为电子的磁矩。自旋用泡利矩阵
则:
因此:
且有
试用Schmidt 方法构成正
(1)求定域电子在磁场中的哈密顿量,并列出电子满足的薛定谔方程:(2)假设(3)求
时,电子自旋指向x 轴正向,即时,电子自旋指向y 轴负向,即
求
时,自旋的平均值。
的几率是多少?
【答案】(1)忽略电子轨道运动,其中,所以哈密顿为:薛定谔方程为:
是玻尔磁子。
(2)在表象中求解,自旋波函数可表示为:
即:
其中,设
因此可得:
时,电子的自旋指向x 轴正向,对应波函数为
在时刻t ,自旋的平均值:
所以:
(3)假设t 时刻,
的几率为P ,则
的几率为
且有:
所以:
3. 两个互作用可以忽略的电子在一维线性谐振子势场中运动,写出系统基态和第一激发态的总波函数。
【答案】单电子波函数的空间部分:
二电子总波函数应为反对称: 基态:第一激发态:
4. 算符
相应的本征矢在表象中的表示。 【答案】因为
如
所以,它的本征值为
则
故
是电子自旋算符经么正变换而得。试求出它的本征值和
相应的本征值在表象中的表示: