2018年中原工学院电子信息学院814信号与系统信号与系统考研强化五套模拟题
● 摘要
一、解答题
1. 在图1(a)所示系统中,已知
如图1(c)所示;
求零状态响应y(t)。
图1
【答案】f(t)的周期T =1S ,
故由
知
的图形如图2(d)所示。
又
故
的图形如图2(e)所示。
又
的模
如图2(f)所示。故
故
的波形如图1(b)所示;
专注考研专业课13年,提供海量考研优质文档!
(f) 图2
2.
有一线性时不变系统,当激励响应
时,
响应
,试求当激励
时,
的表示式(假定起始时刻系统无储能) 。
【答案】由于该系统为线性时不变系统,起始时刻系统无储能,故系统的响应为零状态响应。
利用线性时不变系统具有微分特性
3
. 已知离散系统差分方程表示式
(1)求系统函数和单位样值响应
; (2)
若系统的零状态响应为
(3)
画系统函数的零、极点分布图; (4)粗略画出幅频响应特性曲线; (5)画系统的结构框图。 【答案】
(1)由差分方程得
Z 反变换得到(2)可知
求激励信号f(k);
故
(3)由传递函数知H(z)有一个极点(4)
一个零点z =0,其零、极点分布如图(a)所示。
其幅频相应特性曲线如图(b)所示。
(5)系统的一种模拟图如图(c)所示。
专注考研专业课
13年,提供海量考研优质文档!
图
4. 利用信号f(t)的对称性,定性判断图中各周期信号的傅里叶级数中所含有的频率分量。
图
【答案】(1)图(a)中f(t)为偶函数,同时也是奇谐函数,故只含有基波和奇次谐波的余弦分量。(2)图(b)中f(t)为奇函数,同时也是奇谐函数,故只含有基波和奇次谐波的正弦分量。 (3)图(c)中f(t)为奇谐函数,故只含有奇次谐波分量。
(4)图(d)中f(t)为奇函数,故只含有正弦分量。
(5)图(e)中f(t)既为偶函数又为偶谐函数,故只含直流和偶次谐波的余弦分量。 (6)图(f)中f(t)既为奇函数又为偶谐函数,故只含直流和偶次谐波的正弦分量。
5. 描述连续系统的微分方程组如下,写出其状态方程和输出方程。