当前位置:问答库>考研试题

2017年上海财经大学统计与管理学院432统计学[专业硕士]之概率论与数理统计教程考研强化模拟题

  摘要

一、证明题

1. 同时掷5枚骰子,试证明:

(1)P (每枚都不一样)=0.0926; (2)P (一对)=0.4630; (3)P (两对)=0.2315; (4)P (三枚一样)=0_1543; (5)P (四枚一样)=0.0193; (6)P (五枚一样)=0.0008. 【答案】同时掷5枚骰子共有(1)

2枚组成“一对”,共有以

(3)先将5枚骰子分成三组,其中二组各有2枚殷子,另外一组只有一枚殷子,又考虑到各有2枚骰子的二组内是不用考虑顺序的,所以5枚骰子分成三组共有而这三组骰子出现的点数都不一样有

种可能,所以所求概率为

(4)这里“三枚一样”是指这三枚以外的2枚骰子不成对,所以先从5枚骰子中任取3枚组成一组,共有(53)种取法,然后这一组骰子与剩下的2枚骰子出现的点数不一样,所以

(5)先从5枚骰子中任取4枚组成一组,然后这一组骰子与剩下的一枚骰子各取不同的数,由此得

(6)五枚骰子出现的点数全部一样共有6种情况,所以

第 2 页,共 36 页

个样本点,这是分母,以下分别求之.

(2)这里“一对”是指这一对以外的3枚骰子中不成对且不全相同,所以先从5枚骰子中任取

种取法,然后这“一对”骰子与剩下的3枚骰子出现的点数都不一样,所

种分法,

2. 设随机变量X 与V 相互独立, 且证:

相互独立, 且

【答案】因为X 与Y 的密度函数分别为

下求(U , V )的联合密度函数, 因为可比行列式为

所以, 当

时, 有

3. 设

可分离变量, 故

是来自Rayleigh 分布Ra (θ)的一个样本,Rayleigh 分布的密度函数为

(1)求此分布的充分统计量;

(2)利用充分统计量在给定显著性水平下给出如下检验问题

的拒绝域;

(3)在样本量较大时,利用中心极限定理给出近似拒绝域. 【答案】(1)样本的联合密度函数为

由因子分解定理知,的充分统计量是(2)注意到

第 3 页,共 36 页

的反函数为, 且变换的雅

U 与V 相互独立, 其

由此可见

的无偏估计.

较大时,

拒绝原假设

是合理的.

故对

的拒绝域为

其中c 由概率等式可以证明,

在原假设由等式

成立下,有

可得

分布的

分位数,可得

譬如,当n=15,即当检验统计量(3)由

可知

时,

所以 c=21.887.

时,将拒绝原假设

从而有

在原假设

成立下,有

可看作n 个相互独立同分布随机变量之和,故由中心极限定理

, 从而有

故由等式

可得

若n=15,

查表得

从而

第 4 页,共 36 页

确定. 为了确定c , 需要充分统计量

由此可

的分布.

利用分布的分位数可确定临界值c.

认为

为标准正态分布的分位数,则有