2017年天津商业大学理学院432统计学[专业硕士]之概率论与数理统计教程考研导师圈点必考题汇编
● 摘要
一、证明题
1. 对于组合数
(1)(2)(3)(4)(5)(6)(2)因为
(3)因为
(4)因为
所以
(5)设计如下一个抽样模型:一批产品共有a+b个,其中a 个是不合格品,b 个是合格品,从中随机取出n 个
,
则事件=“取出的II 个产品中有k 个不合格品”的概率为
由诸次
互不相容,且
得
第 2 页,共 41 页
证明:
【答案】(1)等式两边用组合数公式展开即可得证.
把分母移至另一侧即得结论.
注:还有另一种证法:下述等式两端分别展开
可得
比较上式两端的系数即可得
I
(6)在(5)中令a=n,b=n, 则得
再利用(1)的结果即可得证.
2. 设随机变量序列
独立同分布, 其密度函数为
试证:
【答案】因为当x<0时,
有
当
„所以, 对任意的
时,
有
, 当
所以有
结论得证.
3. 设随机变量X 的密度函数p (x )关于c 点是对称的,且E (X )存在,试证:
(1)这个对称中心c 既是均值又是中位数,即(2)如果c=0,则
因此
所以得
又由
所以
(2)当c=0时,
又由
第 3 页,共 41 页
其中常数而当时, 有
, 令
时,
有
【答案】(1)由p (x )关于c 点对称可知:
由此得
由此得结论.
4. 设总体为韦布尔分布
其密度函数为
现从中得到样本
证明
仍服从韦布尔分布, 并指出其参数.
为
因而最小次序统计量这说明.
5. 设总体
【答案】由于总体均方误差为
将上式对a 求导并令其为0, 可以得到当
时,
最小. 且
这就证明了在均方误差准则下存在一个优于的估计. 这也说明,有偏估计有时不比无偏估计差.
6. [1]设随机变量X 仅在区间[a,b]上取值,试证:
[2]设随机变量X 取
值
【答案】[1]仅对连续随机变量X 加以证明. 记p (x )为X 的密度函数,因为
同理可证,
由上题的结论知
[2]仿题[1]有
第 4 页,共 41 页
【答案】由总体分布的密度函数可得总体的分布函数
的分布函数为
是其样本,θ的矩估计和最大似然估计都是,它也是θ的相合
下存在优于的估计. 现考虑形如
的估计类,其
所以
估计和无偏估计,试证明在均方误差准则
的概率分别
是证明
:
相关内容
相关标签