当前位置:问答库>考研试题

2018年辽宁省培养单位沈阳应用生态研究所603高等数学(丙)之工程数学—线性代数考研强化五套模拟题

  摘要

一、解答题

1.

已知

的秩为

2.

二次型

求实数a 的值;

求正交变换x=Qy使得f 化为标准型. 【答案】

⑴由

可得

则矩阵

解得B 矩阵的特征值为

:当

时,

得对应的特征向量为

当时,

得对应的特征向量为

对于

解得对应的特征向量为

将单位转化为

. 令X=Qy,

2.

已知矩阵可逆矩阵P ,使

若不相似则说明理由。

试判断矩阵A 和B 是否相似,若相似则求出

【答案】由矩阵A 的特征多项式

得到矩阵A

的特征值是当

时,由秩

有2个线性无关的解,即

时矩阵A 有2个线性无关的特征向量,矩阵

A 可以相似对角化,因此矩阵A 和B 不相似。

3.

已知方程组量依次是

(Ⅰ)求矩阵 (Ⅱ

)求【答案】

当a=-1及a=0时,方程组均有无穷多解。 当a=-l时,

则当g=0时,

则值的特征向量.

线性相关,不合题意. 线性无关,可作为三个不同特征

的基础解系.

有无穷多解,矩阵A 的特征值是1, -1, 0, 对应的特征向

(Ⅱ

的基础解系,

即为的特征向量

4. 已知A

矩阵,齐次方程组

的基础解系是

与由

的解.

得到

所以矩阵

的基础解系为

则既可由

作初等行变换,有

不全为

当a=0时,

解出

因此,Ax=0与Bx=0

的公共解为

其中t 为任意常数.

线性表出,也可

有非零公共解,求a 的值并求公共解.

贝腕阵

的列向量(即矩阵

作初等行变换,有

又知齐

次方程组Bx=0

的基础解系是

(Ⅰ)求矩阵A ;

(Ⅱ

)如果齐次线性方程组

【答案】(1

)记

A

的行向量)是齐次线性方程组

(Ⅱ)设齐次线性方程组Ajc=0与Sx=0

的非零公共解为由

线性表出,

故可设

于是

二、计算题

5. 设3阶对称阵A

的特征值为

求A.

【答案】因A 对称,

必有正交阵依次取为

的单位化向量,即

使

显然

对应

的特征向量依次为

与正交,

于是

可取为方程的单位解向量.