2018年辽宁省培养单位沈阳应用生态研究所603高等数学(丙)之工程数学—线性代数考研强化五套模拟题
● 摘要
一、解答题
1.
已知
的秩为
2.
二次型
求实数a 的值;
求正交变换x=Qy使得f 化为标准型. 【答案】
⑴由
可得
,
则矩阵
解得B 矩阵的特征值为
:当
时,
解
得对应的特征向量为
当时,
解
得对应的特征向量为
对于
解得对应的特征向量为
:
将单位转化为
:
. 令X=Qy,
则
2.
已知矩阵可逆矩阵P ,使
和
若不相似则说明理由。
试判断矩阵A 和B 是否相似,若相似则求出
【答案】由矩阵A 的特征多项式
得到矩阵A
的特征值是当
时,由秩
知
有2个线性无关的解,即
时矩阵A 有2个线性无关的特征向量,矩阵
A 可以相似对角化,因此矩阵A 和B 不相似。
3.
已知方程组量依次是
(Ⅰ)求矩阵 (Ⅱ
)求【答案】
当a=-1及a=0时,方程组均有无穷多解。 当a=-l时,
则当g=0时,
则值的特征向量.
由
知
线性相关,不合题意. 线性无关,可作为三个不同特征
的基础解系.
有无穷多解,矩阵A 的特征值是1, -1, 0, 对应的特征向
(Ⅱ
)
知
的基础解系,
即为的特征向量
4. 已知A
是
矩阵,齐次方程组
的基础解系是
与由
的解.
对
得到
所以矩阵
的基础解系为
则既可由
对
作初等行变换,有
不全为
当a=0时,
解出
因此,Ax=0与Bx=0
的公共解为
其中t 为任意常数.
线性表出,也可
有非零公共解,求a 的值并求公共解.
知
贝腕阵
的列向量(即矩阵
作初等行变换,有
又知齐
次方程组Bx=0
的基础解系是
(Ⅰ)求矩阵A ;
(Ⅱ
)如果齐次线性方程组
【答案】(1
)记
A
的行向量)是齐次线性方程组
(Ⅱ)设齐次线性方程组Ajc=0与Sx=0
的非零公共解为由
线性表出,
故可设
于是
二、计算题
5. 设3阶对称阵A
的特征值为
求A.
【答案】因A 对称,
必有正交阵依次取为
的单位化向量,即
使
显然
可
对应
的特征向量依次为
与正交,
于是
可取为方程的单位解向量.
相关内容
相关标签