当前位置:问答库>考研试题

2017年暨南大学经济学院810高等代数考研强化模拟题

  摘要

一、选择题

1. 设A 为n 阶可逆矩阵,交换A 的第1行与第2行得B ,则有( ).

A. 交换A*的第1列与第2列得B* B. 交换A*的第1行与第2行得B* C. 交换A*龙第1列与第2列得-B* D. 交换A*的第1行与第2行得-B* 【答案】C

【解析】解法1:题设P (1, 2)A=B,所以有

所以有

即A*右乘初等阵P (1,2)得-B*

解法2:题设P (1,2)A=B,所以丨B 丨=-丨A 丨. 因此

分别为A ,B 的伴随矩阵,

2. 设A 为3阶矩阵,将A 的第2行加到第1行得8, 再将B 的第1列的一1倍加到第2列得C ,

A. B. C. D.

【答案】B

则( ).

【解析】由已知,有

于是

3. 齐次线性方程组

的系数矩阵为A ,若存在3阶矩阵

【答案】C 【解析】若当C.

4. 设A 为4×3矩阵,常数,则

是非齐次线性方程组

时,

由AB=0, 用

使AB=0, 则( )

.

右乘两边,可得A=0, 这与A 卢)矛盾,从而否定B. ,D.

由AB=0,左乘

可得

矛盾,从而否定A ,故选

的3个线性无关的解,为任意

的通解为( )

【答案】C 【解析】由

于又显然有基础解系.

考虑到 5. 设次型.

A.

为任意实数

是非齐次线性方程

组,所以有解矛盾)

的三个线性无关的解,所

以从而

的一个

是对应齐次线性方程组(否则与是

的两个线性无关的解.

的一个特解,所以选C.

则当( )时,此时二次型为正定二

B. C. D. 【答案】D

不等于0 为非正实数 不等于-1

【解析】方法1 用排除法令

这时f (l ,1,1)=0,即f 不是正定的. 从而否定A ,B ,C. 方法2

所以当方法3 设

时,f 为正定二次型.

对应的矩阵为A ,则

A 的3个顺序主子式为

所以当方法4令

时,A 的3个顺序主子式都大于0,则,为正定二次型,故选(D ).

所以f 为正定的.

二、分析计算题

6. 设向量

造一个齐次线性方程组,使它的解空间为W.

【答案】

作齐次线性方程组AX=0,即

它们生成的子空间为

.

试构