2018年山东科技大学信息科学与工程学院836线性代数考研强化五套模拟题
● 摘要
一、解答题
1.
设二次型
(1)证明二次型f
对应的矩阵为(2
)若
【答案】(1)由题意知,
记
正交且均为单位向量,证明f
在正交变换下的标准形为
故二次型/
对应的矩阵为(2)证明:
设则
而矩阵A
的秩
故f
在正交变换下的标准形为 2.
设
当a , b 为何值时,存在矩阵C 使得AC-CA=B,并求所有矩阵C.
,由于
所以
为矩阵对应特征值所以
为矩阵对应特征值
所以
的特征向量;
的特征向量; 也是矩阵的一个特征值;
【答案】显然由AC-CA=B可知,若C 存在,则必须是2阶的方阵,设则AC-CA=B
可变形为
即得到线性方程组
若要使C 存在,则此线性方程组必须有解,于是对方程组的增广矩阵进行初等行变换如下,
故当a=-1,b=0时,线性方程组有解,即存在矩阵C , 使得AC-CA=B. 此时
,
所以方程组的通解为
也就是满足AC-C4=B的矩阵C 为
其中
3.
设矩阵.
【答案】
为任意常数.
求A 的特征值,并讨论A 是否可对角化? 若A 可对角化,则写出其对角
于是A 的3
个特征值为(Ⅰ)当
且
时,A 有3个不同特征值,故4可对角化,且可对角化为
(Ⅱ)当a=0时
,此时A 有二重特征值1,仅对
应1个线性无关的特征向量,故此时A 不可对角化.
(Ⅲ)
当
时
,
此时
A
有二重特征
值
而
仅对应1个线性无关的特征向量,故此时A 不可对角化.
4. 设三阶方阵A 、B
满足式
的值.
其中E 为三阶单位矩阵.
若
求行列
【答案】
由矩阵
知则
. 可
逆.
又
故
即
所以
即
而
故
二、计算题
5.
写出四阶行列式中含有因子位于第2列和第4列,
即
此行列式中含有
6. 设A , B
都是
的项为
和
或
的项. 和
注意到排列1324与1342的逆序数分别为1与2, 故
【答案】由行列式定义知这项必还含有分别位于第3行和第4行的某两元素,而它们又分别
矩阵,证明A 〜B 的充要条件是R (A )=R(B ).
【答案】必要性即课本结论,故只需证明充分性. 设R (A )=R(B )=r,那么矩阵A ,B 有相
同的标准形
于是A 〜F ,B 〜F ,从而由等价关系的对称性和传递性,知A 〜B.
7. 试利用矩阵的初等变换,求下列方阵的逆阵:
(1
)
相关内容
相关标签