当前位置:问答库>考研试题

2018年山东科技大学数学与系统科学学院848线性代数考研强化五套模拟题

  摘要

一、解答题

1.

已知

相似. 试求a , b , c 及可逆矩阵P ,使

【答案】由

于故B 的特征值

从而B

可以对角化为

分别求令

所对应的特征向量,

即a=5.

得A ,B 有相同特征值

再由得b=-2, c=2,于是

分别求A 的对应于特征值1,2, -1的特征向量得

:令

.

因此

专注考研专业课13年,提供海量考研优质文档!

P 可逆

,且 2.

矩阵.

【答案】

求A

的特征值,并讨论A 是否可对角化? 若A 可对角化,则写出其对角

于是A 的3个特征值为(Ⅰ)当

时,A 有3个不同特征值

,故4

可对角化,且可对角化为

(Ⅱ)当a=0

此时A 有二重特征值1,

仅对

应1个线性无关的特征向量,故此时A 不可对角化.

(Ⅲ)当

时,

此时

A

有二重特征值

仅对应1个线性无关的特征向量,故此时A 不可对角化.

专注考研专业课13年,提供海量考研优质文档!

3. 设n 维列向

【答案】

线性无关,其中S 是大于2的偶数. 若矩

试求非齐次线性方程组

的通解.

方程组①化为:

整理得

,由

线性无关,得

显然①与②同解.

下面求解②:对②的增广矩阵作初等行变换得(注意X 是偶数)

从而组的基础解系为数.

4. 已知A

有无穷多解.

易知特解为

从而②的通解,

即①的通解为

对应齐次方程

A 为任意常

矩阵,齐次方程组

的基础解系是

有非零公共解,求a 的值并求公共解.

的解.

贝腕阵

又知齐

次方程组Bx=0

的基础解系是

(Ⅰ)求矩阵A ;

(Ⅱ

)如果齐次线性方程组

【答案】(1

)记

A

的行向量)是齐次线性方程组

的列向量(即矩阵

作初等行变换,有

得到

所以矩阵

的基础解系为

(Ⅱ)设齐次线性方程组Ajc=0与Sx=0

的非零公共解为由

线性表出,

故可设

于是

则既可由

线性表出,也可