2018年新疆师范大学数学科学学院858数学基础[专业硕士]之工程数学—线性代数考研仿真模拟五套题
● 摘要
一、解答题
1. 已知实二次
型
的矩阵A ,满
足
且
其
中
(Ⅰ)用正交变换xzPy 化二次型为标准形,并写出所用正交变换及所得标准形; (Ⅱ
)求出二次型【答案】(Ⅰ)
由由
知,B
的每一列
满足
的具体表达式.
知矩阵A
有特征值即
是属于A 的特征值
.
则
与—
j 正交,于是有
令
的线性无关特征向
显然B 的第1, 2列线性无关
,量,从而知A
有二重特征值
设
对应的特征向量为
解得
将
正交化得:
再将正交向量组
单位化得正交单位向量组:
令
则由正交变换
化二次型为标准形
(Ⅱ
)由于故
故二次型
2
. 已知矩阵可逆矩阵P ,使
和
若不相似则说明理由。
试判断矩阵A 和B 是否相似,若相似则求出
【答案】由矩阵A 的特征多项式
得到矩阵A 的特征值是
当
时,由秩
知
有2个线性无关的解,即
时矩阵A 有2个线性无关的特征向量,矩阵
A 可以相似对角化,因此矩阵A 和B 不相似。 3. 设矩阵.
【答案】
求A 的特征值,并讨论A 是否可对角化? 若A 可对角化,则写出其对角
于是A 的3个特征值为(Ⅰ)当
且
时,A 有3个不同特征值
,故4
可对角化,且可对角化为
(Ⅱ)当a=0
时
,
此时A 有二重特征值1,
仅对
应1个线性无关的特征向量,故此时A 不可对角化
.
(
Ⅲ)当
时,
此时
A
有二重特征值
而
仅对应
1个线性无关的特征向量,故此时A 不可对角化.
4.
已知
与
相似. 试求a
, b , c 及可逆矩阵P ,使
【答案】由于故B 的特征值为
从而B 可以对角化为
分别求所对应的特征向量,得