当前位置:问答库>考研试题

2017年青岛大学经济学院432统计学[专业硕士]考研冲刺密押题

  摘要

一、证明题

1. 设总体X 的密度函数为:

为抽自此总体的简单随机样本.

(1)证明:【答案】(1)令

的分布与无关,并求出此分布.

的置信区间.

的分布与无关,其密度函数为

由于从而求得

上单调递减,为使得区间长度最短,故应取c=0, 所以,的置信水平为

的置信区间为

试证

【答案】设

是取自总体分布函数为

的样本, 则经验分布函数为

若令于是

可写为

, 故有

是独立同分布的随机变量, 且

(2)取c , d 使得

的密度函数为

(2)求的置信水平为

2. 设总体X 的分布函数为

经验分布函数为

3. 设是来自的样本,证明

没有无偏估计.

【答案】(反证法)假设的无偏估计,则

由上式可知,等式的左边关于处处可导,而等式的右边在=0处不存在导数. 因此,假不成立,即没有无偏估计.

4. 设随机变量X 服从负二项分布,其概率分布为

证明其成功概率p 共轭先验分布族为贝塔分布族. 【答案】取成功概率p 先验分布为

与的联合分布为

所以,

即成功概率p 的后验分布为

分布族.

5. 验证:泊松分布的均值λ的共轭先验分布是伽玛分布.

【答案】泊松分布的概率函数为数为

对来自泊松分布

的样本

的后验分布为

若的先验分布为伽玛分布,其密度函故成功概率p 的共轭先验分布族为贝塔

即的后验分布为共轭先验分布. 6. 设计.

【答案】由于

这就证明了

,是的相合估计.

独立同分布,

,证明:

是的相合估

仍为伽玛分布,这说明伽玛分布是泊松分布的均值的

7. 试分别设计一个概率模型问题,用其解答证明以下恒等式

(1)(2)(3)

【答案】设计如下的试验,计算相应的概率,即可证得相应的恒等式.

(1)口袋中装有N 个球,其中m 个为白球. 从中每次取出一球,不放回. 试求迟早取到白球的概率.

因为袋中N 个球中只有m 个白球,在不放回抽样场合,可能第1次抽到白球,或第2次抽到白球,……,或最迟在N-m+1次必取到白球,若记

为第k 次取到白球的概率,则有

对上式两边同乘N/m即得(1). 而(2)(3)两个等式可在如下设计的试验中获得证实. (2)口袋中装有N 个球,其中m 个为白球. 从中每次取出一球,若取出白球,则放回;若取出的不是白球,则换一个白球放回. 试求迟早取到白球的概率.

(3)口袋中装有N 个球,其中m 个为白球. 从中每次取出一球后放回,若取出的不是白球,则不仅放回,且追加一个白球进去. 试求迟早取到白球的概率.