当前位置:问答库>考研试题

2016年青岛科技大学材料学院量子力学或工程力学之量子力学(同等学力加试)复试笔试最后押题五套卷

  摘要

一、简答题

1. 放射性指的是束缚在某些原子核中的更小粒子有一定的概率逃逸出来,你认为这与什么量子效应有关?

【答案】与量子隧穿效应有关。

2. 分别说明什么样的状态是束缚态、简并态与负宇称态?

【答案】当粒子的坐标趋向无穷远时,波函数趋向零,称之为粒子处于束缚态。若一个本征值对应一个以上的本征态,则称该本征值是简并的,所对应的本征态即为简并态,本征态的个数就是相应的简并度。将波函数中的坐标变量改变一个负号,若新波函数与原波函数相差一个负号,则称其为负宇称态。

3. 何谓正常塞曼效应?何谓反常塞曼效应?何谓斯塔克效应?

【答案】在强磁场中,原子发出的每条光谱线都分裂为三条的现象称为正常塞曼效应。在弱磁场中,原子发出的

每条光谱线都分裂为

4. 假设体系的哈密顿算符不显含时间,而且可以分为两部分:一部分是(非简并)和本征函数

已知:另一部分

很小,可以看作是加于

它的本征值

上的微扰. 写出在非简并

条(偶数)的现象称为正常塞曼效应。原子置于外

电场中,它发出的光谱线会发生分裂的现象称为斯塔克效应。

状态下考虑一级修正下的波函数的表达式? 及其包括了一级、二级能量的修正的能级表达式。 【答案】

一级修正波函数为二级近似能量为其中

二、计算题

5. 中子的自旋也为

磁矩为

若中子处于沿y 方向的均匀磁场中,求自旋波函数。

【答案】体系的哈米顿基为:

不妨取

在表象中,

设自旋波函数为则能量本征方程为:

久期方程为:由此可得:(1)当自旋波函数为:

时,由

并结合归一化条件

可得

(2)同理,当

时,可得自旋波函数为:

6. 对于自旋的体系,求量

的概率和

的本征值和本征态,并在较小的本征值对应的本征态中,求测

的平均值。

设本征态

本征值为则:

【答案】

将代回原方程:

即:

所以,因此有:

同理可得: