2016年华北电力大学电气与电子工程学院量子力学(同等学力加试)复试笔试最后押题五套卷
● 摘要
一、简答题
1. 什么是费米子? 什么是玻色子? 两者各自服从什么样的统计分布规律?
【答案】费米子是自旋为半奇数的粒子,玻色子是自旋为整数的粒子. 费米子遵守费米-狄拉克统计规律,玻色子遵从玻色-爱因斯坦统计规律.
2. 分别说明什么样的状态是束缚态、简并态与负宇称态?
【答案】当粒子的坐标趋向无穷远时,波函数趋向零,称之为粒子处于束缚态。若一个本征值对应一个以上的本征态,则称该本征值是简并的,所对应的本征态即为简并态,本征态的个数就是相应的简并度。将波函数中的坐标变量改变一个负号,若新波函数与原波函数相差一个负号,则称其为负宇称态。
3. 什么是塞曼效应?什么是斯达克效应?
【答案】塞曼效应是原子在外磁场中光谱发生分裂的现象;斯达克效应是原子在外电场作用下光谱发生分裂的现象。
4. 什么是量子跃迁?什么是选择定则?线偏振光和圆偏振光照射下的选择定则有什么区别? 【答案】量子跃迁是指在某种外界作用下,体系在不同的定态之间跃迁。
选择定则:从一个定态到另一个定态之间的跃迁概率是否为零,也即跃迁是否是禁戒的。 线偏振光选择定则:
圆偏光选择定则:
二、计算题
5. 考虑自旋为的系统。 (1)试在而4、 5为实常数。
(2)假定此系统处于以上算符的一个本征态上,求测量得到结果为的概率。 【答案】(1)设设本征值为
有
则在
设
表象中
为归一化的本征态,
第 2 页,共 35 页
表象中求算符的本征值及归一化的本征态。其中是角动量算符,
则由本征方程
解得本征态为:
(2)在
表象中,
的本征态为
故发现
的概率为:
6. 考虑相距2a 、带电为e 和一e 的两个粒子组成的一个电偶极子,再考虑一个质量为m 、带电为e 的入射粒子,其入射波矢k 垂直于偶极子方向,见图求在玻恩近似下的散射振幅,并确定微分散射截面取最大值的方向。
图
【答案】电偶极子势能为 由波恩近似有散射振幅为散射微分截面为式中
7. 粒子的一维运动满足薛定愕方程:(1)若
是薛定谔方程的两个解,证明
与时间无关.
此即所求表达式.
【积分未完成】
(2)若势能V 不显含时间t ,用分离变数法导出不含时的薛定谔方程,并写出含时薛定谔方程的通解形式. 【答案】⑴
取式(1)之复共轭,得
得
第 3 页,共 35 页
相关内容
相关标签