2017年华南农业大学林学院601高等数学之高等数学考研题库
● 摘要
一、计算题
1. 求下列函数的自然定义域:
【答案】(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)
即定义域为且即定义域为且
且即定义域为
即定义域为即定义域为即定义域为
即定义域为
且
即定义域为
即定义域为
即定义域为
注:本题是求函数的自然定义域,一般方法是先写出构成所求函数的各个简单函数的定义域,再求出这些定义域的交集,即得所求定义域. 下列简单函数及其定义域是经常用到的:
2. 求过两点
(3,﹣2,1)和
(﹣l ,0,2)的直线方程.
因此所求直线方程为
3. 判定下列曲线的凹凸性:
【答案】(1)(2)当当(3)(4)故曲线
4. 求过点(﹣1, 0, 4),且平行于平面交的直线的方程.
【答案】设所求直线方程为
所求直线平行于平面又所求直线与直线
,故有
相交,故有
,又与直线
相
内是凹的。
时,
, 曲线
在故曲线
令y”=0, 得x=0。
上是凸的。 上是凹的。
, 故曲线
在
内是凹的。 ,
时, y”>0, 曲线y=shx在,
内是凸的
【答案】取所求直线的方向向量
即
联立式(8-9)(8-10)式可得
因此所求直线方成为
5. 一向量的终点在点B (2,﹣1,7),它在x 轴、y 轴和z 轴上的投影依次为4,﹣4和7. 求这向量的起点A 的坐标.
,则
【答案】设A 点坐标为(x ,y ,z )
由题意知
2-x=4,﹣1-y=﹣4,7-z=7
故x=﹣2,y=3, z=0,因此A 点坐标为(﹣2,3,0).
6. 求极限
。
【答案】
7. 当
时,
与
相比,哪一个是高阶无穷小?
【答案】因为比
高阶的无穷小。
8. 利用三重积分计算下列由曲面所围成的立体的体积:
及
及
,所以当时
,
及
;
(含有z 轴的部分)