2017年曲阜师范大学数学科学学院432统计学[专业硕士]之概率论与数理统计考研导师圈点必考题汇编
● 摘要
一、证明题
1. 设A ,B ,C 三事件相互独立,试证A —B 与C 独立.
【答案】因为
所以A-B 与C 独立.
2. 设
是来自Rayleigh 分布Ra (θ)的一个样本,Rayleigh 分布的密度函数为
(1)求此分布的充分统计量;
(2)利用充分统计量在给定显著性水平下给出如下检验问题
的拒绝域;
(3)在样本量较大时,利用中心极限定理给出近似拒绝域. 【答案】(1)样本的联合密度函数为
由因子分解定理知,的充分统计量是(2)注意到
由此可见
是
的无偏估计.
当
较大时,
拒绝原假设
是合理的.
故对
的拒绝域为
其中c 由概率等式可以证明,
当
时
,
第 2 页,共 38 页
确定. 为了确定c , 需要充分统计量
由此可
得
的分布.
或者
在原假设由等式
成立下,有
可得
记
是分布的
分位数,可得
譬如,当n=15,即当检验统计量(3)由
可知
时,
所以 c=21.887.
时,将拒绝原假设
从而有
在原假设
成立下,有
这
里
可看作n 个相互独立同分布随机变量之和,故由中心极限定理
知
, 从而有
故由等式
可得
记
即
若n=15, 3 设.在, 且N 与
查表得
从而
为独立同分布的随机变量序列, 且方差存在. 随机变量N 只取正整数值, 独立. 证明:
【答案】因为
第 3 页,共 38 页
利用分布的分位数可确定临界值c.
认为
为标准正态分布的分位数,则有
存
所
以
4. 设数为
是来自均匀分布
其中
(2)求的贝叶斯估计. 【答案】(1)同时成立,必须
与
的联合分布为
所以的后验分布为
要使
与
的样本,的先验分布是帕雷托(Pareto )分布,其密度函是两个己知的常数.
(1)验证:帕雷托分布是的共轭先验分布;
这是一个参数为
与
的帕雷托分布,因此帕雷托分布是的共轭先验分布.
(2)若选用后验期望估计,则
5. 设
证明:
为独立的随机变量序列, 且
服从大数定律.
所以由
由马尔可夫大数定律知
服从大数定律.
的独立性可得
【答案】因为
第 4 页,共 38 页
相关内容
相关标签