当前位置:问答库>考研试题

2017年曲阜师范大学数学科学学院432统计学[专业硕士]之概率论与数理统计考研导师圈点必考题汇编

  摘要

一、证明题

1. 设A ,B ,C 三事件相互独立,试证A —B 与C 独立.

【答案】因为

所以A-B 与C 独立.

2. 设

是来自Rayleigh 分布Ra (θ)的一个样本,Rayleigh 分布的密度函数为

(1)求此分布的充分统计量;

(2)利用充分统计量在给定显著性水平下给出如下检验问题

的拒绝域;

(3)在样本量较大时,利用中心极限定理给出近似拒绝域. 【答案】(1)样本的联合密度函数为

由因子分解定理知,的充分统计量是(2)注意到

由此可见

的无偏估计.

较大时,

拒绝原假设

是合理的.

故对

的拒绝域为

其中c 由概率等式可以证明,

第 2 页,共 38 页

确定. 为了确定c , 需要充分统计量

由此可

的分布.

或者

在原假设由等式

成立下,有

可得

是分布的

分位数,可得

譬如,当n=15,即当检验统计量(3)由

可知

时,

所以 c=21.887.

时,将拒绝原假设

从而有

在原假设

成立下,有

可看作n 个相互独立同分布随机变量之和,故由中心极限定理

, 从而有

故由等式

可得

若n=15, 3 设.在, 且N 与

查表得

从而

为独立同分布的随机变量序列, 且方差存在. 随机变量N 只取正整数值, 独立. 证明:

【答案】因为

第 3 页,共 38 页

利用分布的分位数可确定临界值c.

认为

为标准正态分布的分位数,则有

4. 设数为

是来自均匀分布

其中

(2)求的贝叶斯估计. 【答案】(1)同时成立,必须

的联合分布为

所以的后验分布为

要使

的样本,的先验分布是帕雷托(Pareto )分布,其密度函是两个己知的常数.

(1)验证:帕雷托分布是的共轭先验分布;

这是一个参数为

的帕雷托分布,因此帕雷托分布是的共轭先验分布.

(2)若选用后验期望估计,则

5. 设

证明:

为独立的随机变量序列, 且

服从大数定律.

所以由

由马尔可夫大数定律知

服从大数定律.

的独立性可得

【答案】因为

第 4 页,共 38 页