当前位置:问答库>考研试题

2017年南京大学2110概率论复试实战预测五套卷

  摘要

一、计算题

1. 设总体X 的分布函数为

是来自总体的简单随机样本,(1)求

量;(3)是否存在常数a ,使得对任意的

都有

其中为未知的大于零的参数

;(2)求

的极大似然估计

【答案】(1)由题意,先求出总体X 的概率密度函数

(2)极大似然函数为则当所有的观测值都大于

零时

(3)由于可知

的极大似然估计量为

独立同分布,显然对应的

由辛钦大数定律,

可得

故存在常数

使得对任意的

都有

也独立同分布,又有(1)

再由(1)(2)可知

2. 求下列分布函数的特征函数, 并由特征函数求其数学期望和方差.

(1)(2)

【答案】(1

)因为此分布的密度函数为所以此分布的特征函数为

又因为

所以

(2)因为此分布的密度函数为所以此分布的特征函数为又因为当t>0时, 有

所以当而当又因为

时, 有时, 有

所以

在t=0处不可导, 故此分布(柯西分布)的数学期望不存在.

3. 写出下列随机试验的样本空间:

(1)抛三枚硬币; (2)抛三颗骰子;

(3)连续抛一枚硬币,直至出现正面为止;

(4)口袋中有黑、白、红球各一个,从中任取两个球;先从中取出一个,放回后再取出一个;(5)口袋中有黑、白、红球各一个,从中任取两个球;先从中取出一个,不放回后再取出一个.

【答案】

⑴共含有

(2)

(3)(4)(5)

4. 设

个样本点,其中0表示反面,1表示正面,(3)中的0与1也是此意.

共含有

个样本点.

共含有可列个样本点.

{黑黑,黑白,黑红,白黑,白白,白红,红黑,红白,红红}. {黑白,黑红,白黑,白红,红黑,红白}. 独立同分布, 其共同分布为

试求的相关系数.

【答案】先计算的期望、方差与协方差

.

然后计算

的相关系数

.

5. 将n 个完全相同的球(这时也称球是不可辨的)随机地放入N 个盒子中,试求:

(1)某个指定的盒子中恰好有k 个球的概率; (2)恰好有m 个空盒的概率;

(3)某指定的m 个盒子中恰好有j 个球的概率.

【答案】先求样本点总数,我们用N+1根火柴棒排成一行,火柴棒之间的N 个司隔恰好形成N 个盒子,并依次称它们为第1个盒子,第2个盒子,…,第N 个盒子,n 个球用“0”表示,考虑到两端必须是火柴棒方能形成N 个盒子,所以n 个(不可辨)球放入N 个(可辨)盒子中,就相当于把N-1根火柴棒(N+1根火柴棒中去掉两端的两根)和n 个“0”随机地排成一行,譬如N=4, n=3时,“10010111”表示第1个盒子中有2个球、第2个盒子中有1个球、第3、4个盒子中无球,这样一来,n 个球放入N 个盒子所有的样本点总数相当于:从N-1+n个位置任选n 个位置放“0”、其他位置放火柴棒,故样本点总数为

(1)记A 为事件“指定的某个盒子中恰有k 个球”,不失一般性,可认为第1个盒子中有k 个球,则余下n-k 个球放入另外N-1个盒子中,类似于样本点总数的计算,

此种样本点共有

考虑到球不可辨故

(2)记

为事件“恰有m 个空盒”,它的发生可分两步描述:

种取法.

第一步,从N 个盒子任取m 个盒子,共有

第二步,将n 个球放入余下的N_m个盒中,且这N —m 个盒子中都要有球,

这当然要求

否则第二步发生的概率为零,为了使第二步能发生,我们设想先把n 个

球排成一行,随机抽取球与球之间的n-1个间隔中的N-m-1个间隔放火柴棒即可,这有