2017年南京大学2110概率论复试实战预测五套卷
● 摘要
一、计算题
1. 设总体X 的分布函数为
是来自总体的简单随机样本,(1)求
量;(3)是否存在常数a ,使得对任意的
都有
其中为未知的大于零的参数
,
;(2)求
的极大似然估计
【答案】(1)由题意,先求出总体X 的概率密度函数
(2)极大似然函数为则当所有的观测值都大于
零时
,
(3)由于可知
令
得
的极大似然估计量为
独立同分布,显然对应的
由辛钦大数定律,
可得
故存在常数
使得对任意的
都有
也独立同分布,又有(1)
再由(1)(2)可知
,
2. 求下列分布函数的特征函数, 并由特征函数求其数学期望和方差.
(1)(2)
【答案】(1
)因为此分布的密度函数为所以此分布的特征函数为
又因为
所以
(2)因为此分布的密度函数为所以此分布的特征函数为又因为当t>0时, 有
所以当而当又因为
时, 有时, 有
所以
在t=0处不可导, 故此分布(柯西分布)的数学期望不存在.
3. 写出下列随机试验的样本空间:
(1)抛三枚硬币; (2)抛三颗骰子;
(3)连续抛一枚硬币,直至出现正面为止;
(4)口袋中有黑、白、红球各一个,从中任取两个球;先从中取出一个,放回后再取出一个;(5)口袋中有黑、白、红球各一个,从中任取两个球;先从中取出一个,不放回后再取出一个.
【答案】
⑴共含有
(2)
(3)(4)(5)
4. 设
与
个样本点,其中0表示反面,1表示正面,(3)中的0与1也是此意.
共含有
个样本点.
共含有可列个样本点.
{黑黑,黑白,黑红,白黑,白白,白红,红黑,红白,红红}. {黑白,黑红,白黑,白红,红黑,红白}. 独立同分布, 其共同分布为
与
试求的相关系数.
【答案】先计算的期望、方差与协方差
.
然后计算
与
的相关系数
.
5. 将n 个完全相同的球(这时也称球是不可辨的)随机地放入N 个盒子中,试求:
(1)某个指定的盒子中恰好有k 个球的概率; (2)恰好有m 个空盒的概率;
(3)某指定的m 个盒子中恰好有j 个球的概率.
【答案】先求样本点总数,我们用N+1根火柴棒排成一行,火柴棒之间的N 个司隔恰好形成N 个盒子,并依次称它们为第1个盒子,第2个盒子,…,第N 个盒子,n 个球用“0”表示,考虑到两端必须是火柴棒方能形成N 个盒子,所以n 个(不可辨)球放入N 个(可辨)盒子中,就相当于把N-1根火柴棒(N+1根火柴棒中去掉两端的两根)和n 个“0”随机地排成一行,譬如N=4, n=3时,“10010111”表示第1个盒子中有2个球、第2个盒子中有1个球、第3、4个盒子中无球,这样一来,n 个球放入N 个盒子所有的样本点总数相当于:从N-1+n个位置任选n 个位置放“0”、其他位置放火柴棒,故样本点总数为
(1)记A 为事件“指定的某个盒子中恰有k 个球”,不失一般性,可认为第1个盒子中有k 个球,则余下n-k 个球放入另外N-1个盒子中,类似于样本点总数的计算,
此种样本点共有
考虑到球不可辨故
(2)记
为事件“恰有m 个空盒”,它的发生可分两步描述:
种取法.
第一步,从N 个盒子任取m 个盒子,共有
第二步,将n 个球放入余下的N_m个盒中,且这N —m 个盒子中都要有球,
这当然要求
:
或
否则第二步发生的概率为零,为了使第二步能发生,我们设想先把n 个
球排成一行,随机抽取球与球之间的n-1个间隔中的N-m-1个间隔放火柴棒即可,这有
相关内容
相关标签