2017年安徽财经大学概率论与数理统计考研复试核心题库
● 摘要
一、计算题
1. 已知某种材料的抗压强度下:
(1)求平均抗压强度的置信水平为95%的置信区间; (2)若已知
求平均抗压强度的置信水平为95%的置信区间;
s=35.2176在未知时,的置信水平为95%的置信区间为
因而的置信水平为95%的置信区间为
(2)在查表得,(3)此处,
因而
已知时,的置信水平为95%的置信区间为
,因而的置信水平为95%的置信区间为
取
,查表得
,
由此可以得到的置信水平为95%的置信区间为[24.2239,64.1378].
2. 设
是来自几何分布的样本,总体分布列为
θ的先验分布是均匀分布U (0,1). (1)求θ的后验分布;
(2)若4次观测值为4, 3, 1,6, 求θ的贝叶斯估计. 【答案】(1)样本和θ的联合密度函数为
于是
的置信水平为95%的置信区间为
(3)求的置信水平为95%的置信区间. 【答案】(1)经计算得,查表得,
,现随机地抽取10个试件进行抗压试验,测得数据如
因此,θ的后验分布为
(2)当有观测值为4, 3, 1,6时,θ的后验分布为Be (5, 15), 若采用后验期望估计,
则有
3. 设试求概率
为独立同分布的随机变量, 共同分布为U (0, 5). 其算术平均为
,
【答案】由均匀分布U (0, 5)可算得
利用林德伯格-莱维中心极限定理, 可得
这表明:来自均匀分布U (0, 5)的48个随机数的平均在2到3之间的概率近似为0.9836, 较接近于1.
4. 设
是来自密度函数为的样本,
(1)求θ的最大似然估计它是否是相合估计?是否是无偏估计? (2)求θ的矩估计
它是否是相合估计?是否是无偏估计?
【答案】(1)似然函数为
显然L (θ)在示性函数为1的条件下是θ的严増函数,因此θ的最大似然估计为又
的密度函数为
故
故不是θ的无偏估计,但是θ的渐近无偏估计. 由于
且
这说明是θ的相合估计. (2)由
于
,所以
这给
出
,从而有
这说明既是θ的无偏估计,也是相合估计.
所以θ的矩估计
为
又
5. 设随机变量(X , Y )的联合密度函数为
试求 (1)常数k ; (2)(3)(4)【答案】(1)(2)(3)(4)
的非零区域与
的交集如图的阴影部分,
图
由图得
6. 若
【答案】
7. 某地区成年男子的体重X (kg )服从正态分布
0.25.
(1)求. 少?
【答案】(1)由
其中试求
若已知
各为多少?
(2)若在这个地区随机地选出5名成年男子,问其中至少有两人体重超过65kg 的概率是多