2017年首都经济贸易大学数理统计工程数学:概率论与数理统计复试实战预测五套卷
● 摘要
目录
2017年首都经济贸易大学数理统计工程数学:概率论与数理统计复试实战预测五套卷(一) . 2 2017年首都经济贸易大学数理统计工程数学:概率论与数理统计复试实战预测五套卷(二) . 6 2017年首都经济贸易大学数理统计工程数学:概率论与数理统计复试实战预测五套卷(三) 11 2017年首都经济贸易大学数理统计工程数学:概率论与数理统计复试实战预测五套卷(四) 16 2017年首都经济贸易大学数理统计工程数学:概率论与数理统计复试实战预测五套卷(五) 22
第 1 页,共 26 页
一、计算题
1. 将n 根绳子的2n 个头任意两两相接,求恰好结成n 个圈的概率.
【答案】设事件
为“恰好结成n 个圈”,记
又记事件B 为“第1根绳子的两个头
容易看出
所以得递推公式
由此得
2. 假设人体身高服从正态分布,今抽测甲、乙两地区18岁〜25岁女青年身高得数据如下:甲地区抽取10名,样本均值1.64m ,样本标准差0.2m ; 乙地区抽取10名,样本均值1.62m , 样本标准差0.4m. 求:
(1)两正态总体方差比的置信水平为95%的置信区间; (2)两正态总体均值差的置信水平为95%的置信区间. 【答案】设设条件
,
(1)
的
的置信区间为
由此,
为甲地区抽取的女青年身高,
此处
,
为乙地区抽取的女青年身高,由题
相接成圈”,则由全概率公式得
m=n=10, 查表得信区间为
的置信水平为95%的置
(2)由(1)方差相等,此时,
查表得
故两正态总体均值差的置信水平为95%的置信区间为
第 2 页,共 26 页
的置信水平为95%的置信区间包含1, 因此有一定理由假定两个正态总体的
还有另一种解法就是不对方差相等作假定,而采用近似方法求均值差的置信区间,由于
从而两正态总体均值差的置信水平为95%的近似置信区间为
这二个置信区间相差不算太小,所以在应用中条件“方差相等”是否成立是要加以考证的. 查表知
3. 设随机变量
相互独立、同服从N (0, 1), 则
相互独立的充要条件为其协方差为0, 即E (UV )=0, 实际上
这表明:U 与V 相互独立的充要条件是
其中诸如今已知
与
均为实数.
的充要条件为
【答案】由于正态随机变量的线性组合仍为正态变量, 而两个正态变量相互独立的充要条件是
4. 在假设检验问题中,若检验结果是接受原假设,则检验可能犯哪一类错误?若检验结果是拒绝原假设,则又有可能犯哪一类错误?
【答案】若检验结果是接受原假设,可能有两种情况:其一是原假设为真,此时检验是正确的,未犯错误,其二是原假设不真,此时检验结果就错了,这种错误是接受了不真的原假设,为第二类错误,故此时检验可能犯第二类错误.
若检验结果是拒绝原假设,也可能有两种情况:若原假设本身不真,检验是正确的;若原假设事实上是真的,则检验就犯了第一类错误,由此,在此种场合,检验可能会犯第一类错误.
5. 每次射击命中率为0.2,试求:射击多少次才能使至少击中一次的概率不小于0.9?
【答案】设共射击n 次,记事件为“第i 次射击命中目标”,i=l,2,…,n ,则由题设条件知
由此得
两边取对数解得
所以取n=11可满足题设条件.
6. 某种圆盘的直径在区间(a ,b )上服从均匀分布,试求此种圆盘的平均面积.
【答案】记X 为圆盘的直径,则圆盘的面积为
第 3 页,共 26 页
所以平均面积为
7. (泊松大数定律)设的概率为
为n 次独立试验中事件A 出现的次数, 而事件A 在第i 次试验时出现
则对任意的
, 有
【答案】记
则
所以由切比雪夫不等式, 对任意的
有
即
8. 设离散型随机变量X 的分布列为
表
试求E (X )和E (3X+5). 【答案】
二、证明题
9. 设
是来自二点分布b (1, p )的一个样本,
(1)寻求的无偏估计; (2)寻求p (1-p )的无偏估计; (3)证明1/p的无偏估计不存在. 【答案】(1)是
的一个直观估计,但不是的无偏估计,这是因为
由此可见(2)
是的无偏估计.
是p (1-P )的直观估计,但不是p (1-P )的无偏估计,这是因为
第 4 页,共 26 页