2017年石河子大学概率论与数理统计考研复试核心题库
● 摘要
一、计算题
1. 设随机变量X 服从区间(-1,1)上的均匀分布,求:
(1)(2)【答案】⑴
(2
)
当y<0时
,
所以得
2. 设K 服从(1,6)上的均匀分布,求方程
【答案】方程
有实根的充要条件是
,因此所求概率为
而K 〜U (l ,6)
3. 设事件A ,B 独立,两个事件仅A 发生的概率或仅B 发生的概率都是1/4,求P . (A )及P (B )
【答案】由题设知
又因为A ,B 独立,所以由
解得P (A )=P(B )=0.5.
4. (泊松大数定律)设的概率为
为n 次独立试验中事件A 出现的次数, 而事件A 在第i 次试验时出现
则对任意的
, 有
【答案】记
则
第 2 页,共 26 页
的密度函数.
当时
,
当时
,
有实根的概率.
所以由切比雪夫不等式, 对任意的
有
即
5. 设试找出
【答案】
独立同分布服从
与t 分布的联系, 因而定出的密度函数.
的联合密度函数为
记
。
记
取一个n 维正交矩阵A , 其第一行为元素全为
其余元素只要满足正交性即可. 令Y=AX, 则该变换的雅可比行列式为1, 且注意到:
于是
的联合密度函数为
, 第二行为
由此,
独立同分布于
且
令
则
而
第 3 页,共 26 页
这就建立了与t 分布的联系, 并可定出的密度函数.
6. 设随机变量X 与Y 相互独立, 其联合分布列为
表
试求联合分布列中的a , b , c.
【答案】先对联合分布列按行、按列求和, 求出边际分布列如下:
表
由X 与Y 的独立性, 从上表的第2行、第2列知6=(6+4/9)(6+1/9), 从中解得b=2/9, 再从上表的第2行、第1列知知:
由此得c=1/6.
7. 已知某种材料的抗压强度下:
(1)求平均抗压强度的置信水平为95%的置信区间; (2)若已知
求平均抗压强度的置信水平为95%的置信区间;
s=35.2176在未知时,的置信水平为95%的置信区间为
因而的置信水平为95%的置信区间为
第 4 页,共 26 页
从中解得a=1/18, 最后由联合分布列的正则性
,现随机地抽取10个试件进行抗压试验,测得数据如
(3)求的置信水平为95%的置信区间. 【答案】(1)经计算得,查表得,
相关内容
相关标签