当前位置:问答库>考研试题

2017年清华大学数学科学系432统计学[专业硕士]之概率论与数理统计教程考研仿真模拟题

  摘要

一、证明题

1. 口袋中有a 个白球、b 个黑球和n 个红球,现从中一个一个不返回地取球. 试证白球比黑球出现得早的概率为a/(a+b),与n 无关.

【答案】记事件A 为“第一次取出白球”,B 为“第一次取出黑球”,C 为“第一次取出红球容易B ,C 互不相容,看出,事件A ,且

(2)设其中

以下对n 用归纳法:

(1)当n=0时,则“白球比黑球出现得早”意味着:第一次就取出白球,所以有

代入可得

由归纳法知结论成立.

2. 设连续随机变量X 服从柯西分布, 其密度函数如下:

其中参数

(1)试证X 的特征函数为(2)当(3)若

【答案】(1)因为

时, 记Y=X, 试证

的密度函数为

y 的特征函数为

下证柯西分布的可加性, 设

, 由此得服从参数为

的特征函数

的柯西分布, 其密度函数为

相互独立, 则

的柯西分布的特征函数, 所以由唯一性定理知,

的柯西分布.

第 2 页,共 45 页

又设为“有n 个红球时,白球比黑球出现得早”,

常记为

且利用此结果证明柯西分布的可加性;

, 但是X 与Y 不独立;

与同分布.

相互独立, 且服从同一柯西分布, 试证:

这正是参数为数为

服从参

(2)当所以

时有,

,

由于Y=X, 当然X 与Y 不独立 此题说明, 由(3

)设得:

的特征函数为

不能推得X 与Y 独立.

, 由相互独立性

都服从参数为的柯西分布,

则特征函数为

与具有相同的特征函数, 由唯一性定理知它们具有相同的分布.

中抽取容量为

,的两独立样本其样本方差分别为

3 设分别自总体.

试证,对于任意常数a , b (a+b=l),达到最小.

【答案】由已知条件有

都是的无偏估计,并确定常数a , b 使Var (Z )

独立. 于是

这证明了又

是的无偏估计.

从而

因而当

时,V ar (Z )达到最小,此时

这个结果表明,对来自方差相等(不论均值是否相等)的两个正态总体的容量为本,上述是的线性无偏估计类中方差最小的.

4. 设X 〜N (0, 1), Y 各以0.5的概率取值±1, 且假定X 与Y 相互独立. 令

(1)

(2)X 与Z 既不相关也不独立. 【答案】(1)由全概率公式可得

第 3 页,共 45 页

该无偏估计为

的样

证明:

所以Z 〜N (0, 1).

(2)因为E (X )=0, E (Y )=0, 且X 与Y 相互独立, 所以

所以X 与Z 不相关. 为证明X 与Z 是不独立的, 我们考查如下特定事件的概率, 且对其使用全概率公式

考虑到而

5. 设分布函数列敛于分布函数F (x ).

【答案】

对任意的点

:

则有

(1)

这时存在N , 使得当n>N时, 有

对任意的当

时, 有

由(1), (3)式可得

即有

, 结论得证.

6. 已知某商场一天来的顾客数X 服从参数为的泊松分布,而每个来到商场的顾客购物的概率为p ,证明:此商场一天内购物的顾客数服从参数为

的泊松分布.

【答案】用Y 表示商场一天内购物的顾客数,则由全概率公式知,对任意正整数k 有

这表明:Y 服从参数为

第 4 页,共 45 页

故有

所以

弱收敛于连续的分布函数F (x ), 试证:

取M 充分大,

使有当

使有

时,

再令

即X 与Z 不独立.

上一致收

时,

,

对上述取定的M , 因为F (x )在闭区间[-M, M]上一致连续, 故可取它的k 个分

必存在某个i , 使得由(2)式知,

的泊松分布.