2018年天津科技大学食品工程与生物技术学院314数学(农)之工程数学—线性代数考研仿真模拟五套题
● 摘要
一、解答题
1. 设线性方程
m
【答案】
对线性方程组的增广矩阵
试就
讨论方程组的解的悄况,备解时求出其解.
作初等行变换,如下
(1
)当
即
且
时
则方程组有惟一答:
(2)
当
且
即
且
时
则方程组有无穷多可得其一个特解
解.
此时原方程组与同解,
解得其基础解系为
为任意常数. 此时方程组无解. 时
故原方程组的通解为
(3
)当
(4
)当
2.
设
即
时
此时方程组无解.
当a , b 为何值时,存在矩阵C 使得AC-CA=B,并求所有矩阵C.
【答案】显然由AC-CA=B可知,若C 存在,则必须是2阶的方阵,设则AC-CA=B
可变形为
专注考研专业课13年,提供海量考研优质文档!
即得到线性方程组
若要使C
存在,则此线性方程组必须有解,于是对方程组的增广矩阵进行初等行变换如下,
故当a=-1,
b=0时,线性方程组有解,
即存在矩阵C , 使得AC-CA=B.
此时,
所以方程组的通解为
也就是满足
AC-C4=B的矩阵C
为
其中
3.
已知
为任意常数
.
其中E 是四阶单位矩阵
是四阶矩阵A 的转置矩阵,
求矩阵A
【答案】对
作恒等变形,有即
由故矩阵可逆.
则有
以下对矩阵做初等变换求逆,
专注考研专业课13年,提供海量考研优质文档!
所以有
4.
设n 维
列向量
【答案】记
线性无
关,其中S
是大于2的偶数. 若矩
阵
试求非齐次线性方程组
的通解.
方程组①化为:
整理得,由
线性无关,得
显然①与②同解.
下面求解②:对②的增广矩阵作初等行变换得(注意X 是偶数)
从而组的基础解系为数.
有无穷多解. 易知特解为
从而②的通解,即①的通解为
对应齐次方程A 为任意常
二、计算题
相关内容
相关标签