当前位置:问答库>考研试题

2018年天津科技大学食品工程与生物技术学院314数学(农)之工程数学—线性代数考研仿真模拟五套题

  摘要

一、解答题

1. 设线性方程

m

【答案】

对线性方程组的增广矩阵

试就

讨论方程组的解的悄况,备解时求出其解.

作初等行变换,如下

(1

)当

则方程组有惟一答:

(2)

则方程组有无穷多可得其一个特解

解.

此时原方程组与同解,

解得其基础解系为

为任意常数. 此时方程组无解. 时

故原方程组的通解为

(3

)当

(4

)当

2.

此时方程组无解.

当a , b 为何值时,存在矩阵C 使得AC-CA=B,并求所有矩阵C.

【答案】显然由AC-CA=B可知,若C 存在,则必须是2阶的方阵,设则AC-CA=B

可变形为

专注考研专业课13年,提供海量考研优质文档!

即得到线性方程组

若要使C

存在,则此线性方程组必须有解,于是对方程组的增广矩阵进行初等行变换如下,

故当a=-1,

b=0时,线性方程组有解,

即存在矩阵C , 使得AC-CA=B.

此时,

所以方程组的通解为

也就是满足

AC-C4=B的矩阵C

其中

3.

已知

为任意常数

.

其中E 是四阶单位矩阵

是四阶矩阵A 的转置矩阵,

求矩阵A

【答案】对

作恒等变形,有即

由故矩阵可逆.

则有

以下对矩阵做初等变换求逆,

专注考研专业课13年,提供海量考研优质文档!

所以有

4.

设n 维

列向量

【答案】记

线性无

关,其中S

是大于2的偶数. 若矩

试求非齐次线性方程组

的通解.

方程组①化为:

整理得,由

线性无关,得

显然①与②同解.

下面求解②:对②的增广矩阵作初等行变换得(注意X 是偶数)

从而组的基础解系为数.

有无穷多解. 易知特解为

从而②的通解,即①的通解为

对应齐次方程A 为任意常

二、计算题