2017年山东大学经济研究院432统计学[专业学位]之概率论与数理统计教程考研强化模拟题
● 摘要
一、计算题
1. 设连续随机变量X 的分布函数为
试求
(1)系数A ;
(2)X 落在区间(0.3,0.7)内的概率; (3)X 的密度函数.
【答案】(1)由F (x )的连续性,有(2)
(3)X 的密度函数(如图)为
由此解得A=l.
图
2. 甲、乙两选手进行乒乓球单打比赛,已知在每局中甲胜的概率为0.6,乙胜的概率为0.4. 比赛可采用三局二胜制或五局三胜制,问哪一种比赛制度对甲更有利?
【答案】(1)若采用三局二胜制,则甲在下列两种情况下获胜:
所以得
(2)若采用五局三胜制,则甲在下列三种情况下获胜:
=“前三局甲胜”,
=“前三局中甲胜两局乙胜一局,第四局甲胜”,
=“前四局甲乙各胜二局,第五局甲胜”, 所以得
所以五局三胜制对甲更有利.
3. 某批产品含有N 件,其中M 件为不合格品,现从中随机抽取n 件中有X 件不合格品,则X 服从超几何分布,即
假如N 与n 已知,寻求该批产品中不合格品数M 的最大似然估计. 【答案】记未知参数M 的似然函数为L (M ; x )=P(X=x). 考察似然比
要使似然比化简此式可得是M 的增函数,即
类似地,要使似然比这表明,当
为整数且
必导致
时,似然函数L (M , x )是M 的减函数,即
比较(*)式和(**)式可知,当为整数时,M 的最大似然估计为M 的最大似然估计为不为整数时,
综合上述,M 的最大似然估计为
譬如,在N=19, n=5,x=2场合,
M 的最大似然估计为7或8. 下面以实际计算加以佐证,几个
表
1
可见M 取7或8可使似然函数达到最大. 又如,在N=16,n=5,x=2场合,这时M 的最大似然估计
实际计算如下表 表2
必导致
这表明:当
为整数和
时,似然函数L (M , x )
而当
其中[a]为不超过a 的最大整数.
由于为整数,故
如下表1所示:
,(不为整数)
可见M 取6可使似然函数达到最大.
4. 设随机变量x 与y 相互独立,x 的概率分布为
,记Z=X+Y。
(I
)求【答案】 (I
)
,则其值为非零时z 的取值区间为[-1,2]。 (II )设z 的分布函数为F (z )当z<-1时,F (z )=0; 当z>2时,F (z )=0;
当
所以z 的分布密度函数为
5. 设二维离散随机变量(X , Y )的可能取值为
(0, 0), (-1, 1), (-1, 2), (1, 0),
且取这些值的概率依次为1/6, 1/3, 1/12, 5/12, 试求X 与Y 各自的边际分布列. 【答案】由题设条件知, (X , Y )的联合分布列为
表
1
时,
Y
的概率密度为
(II )求X 的概率密度f (z )。
在上面表格中按行相加, 得X 的边际分布列;按列相加, 得Y 的边际分布列:
表2