2017年长沙理工大学J0701概率论与数理统计(同等学力加试)复试实战预测五套卷
● 摘要
一、计算题
1. 设曲线函数形式为y=a+blnx,试给出一个变换将之化为一元线性回归的形式.
【答案】令u=lnx,v=y,则原曲线函数化为V=a+bu,即为一元线性回归的形式.
2. 由正态总体N (100, 4)抽取两个独立样本, 样本均值分别为, 样本容量分别为15, 20, 试求
【答案】由条件得即
, 于是
3. 我们知道营业税税收总额y 与社会商品零售总额x 有关. 为能从社会商品零售总额去预测税收总额,需要了解两者之间的关系. 现收集了如下九组数据(单位:亿元):
表
1
且
相互独立, 从而
(1)画散点图;
(2)建立一元线性回归方程,并作显著性检验(取区间;
(4)若已知回归直线过原点,试求回归方程,并在显著性水平0.05下作显著性检验. 【答案】(1)散点图如图
,列出方差分析表; )
(3)若已知某年社会商品零售额为300亿元,试给出营业税税收总额的概率为0.95的预测
图
类似的问题我们己经做过多次,此处我们使用MA TLAB 统计软件来进行,把数据输入到worksheet 中,在选项stat 中选择regression. 在弹出的对话框中将因变量和自变量选入即可,得到的回归方程为
方差分析表如下:
表
2
根据以上结果,在显著性水平下,回归方程是显著的.
(3)按照(2)的步骤进入regression 对话框,点击options 后,在prediction of new observation中给出自变量x 的值300,就可以得到y 的0.95预测区间为[9.688,14.999].
(4)若想要拟合不带截距的过原点的回归方程,只要在options 中在Fitintercept 选项中不选,即可得到过原点的回归直线为
此时检验的P 值为0.000,因此在显著性水平
下,
过原点的回归方程是显著的.
4. 在入户推销效果研究中,分别用Hartley 检验和Bartlett 检验在显著性水平总体作方差齐性检验.
【答案】在习题中,r=5,每组样本量相同,均为7,可以采用Hartlev 检验,由于样本量大于5,也可以采用Bartlett 检验.
我们首先用Hartley 检验对等方差性作判断. 通过习题的解答我们可以算出各组内的平方和分别为
利用公式
可求得各组的样本方差
因而统计量H 的值为
对显著性水
平
由表查
得
下对五个
从而拒绝域
为由于
所以应该接受原假设即认为各个总体方差相等.
且
接下来计算Bartlett 检验统计量. 习题中已求得
于是Bartlett 检验统计量为
对显著性水
平
故应接受原假设
查表
知
拒绝域
为
由
于
即认为诸水平的方差满足方差齐性条件. 两种检验的结果是一致的.
5. 把n 个“0”与n 个“1”随机地排列,求没有两个“1”连在一起的概率.
2n 个位置上“1”占有n 个位置,【答案】考虑n 个“1”的放法:所以共有放法,于是所求概率为
具体可算得
随着n 的増加,此种事件发生的概率愈来愈小,
种放法,这是分母,
种
而“没有两个1连在一起”,相当于在n 个“0”之间及两头(共n+1个位置)去放“1”,这共有
最后趋于零.
6. 设随机变量X 服从(0,1)上的均匀分布,试求以下Y 的密度函数:
(1)(2)(3)(4)
【答案】X 的密度函数为
(1)因为Y 的可能取值区间为调减函数,其反函数为
且
,且
所以
在区间(0,1)上为严格单
的密度函数为
,且(2)因为Y 的可能取值区间为(1,4)函数,其反函数为
且
在区间(0,1)上为严格单调増
所以Y=3X+1的密度函数为
,且(3)因为Y 的可能取值区间为(1,e )
甶区问(0,1)上为严格单调增函