2018年中南大学数学与统计学院432统计学[专业硕士]之概率论与数理统计教程考研强化五套模拟题
● 摘要
一、证明题
1. 证明:
【答案】不妨设另一方面,还有
综合上述两方面,可得
2. 设随机变量
且X 与Y 相互独立,令
试证明: (1)(2)(3)【答案】(1)
(2)由(1)知,(3)由(2)知所以
由此得
3. 试用特征函数的方法证明伽玛分布的可加性:若随机变量与Y 独立,则
【答案】因为
所以由X 与Y 的独立性得这正是伽玛分布
第 2 页,共 49 页
. ,则
所以
因为X 与Y 相互独立,
且X
的特征函数,由唯一性定理知
4. 设随机向量
证明:【答案】由
满足
知
所以
5. 设随机变量X
有密度函数Y=与
不相关、但不独立. 【答案】因为
不相互独立,特给定
使得
且密度函数所以
是偶函数,假定
这表明:X 与
现考查如下特定事件的概率
证明:X 与不相关.
为证明
所以X 与
6. 证明:
(1)(2)
不独立.
.
,移项即得结论.
【答案】(1)由
(2)对n 用数学归纳法,当n=2时,由(1)知结论成立. 设n-1时结论成立,即
则由(1)知
各以
的概率取值
且假定
与相互独立. 令
证明:
7. 设
(1)
(2)X 与既不相关也不独立. 【答案】(1)由全概率公式可得
所以(2)因为
且X 与Y 相互独立,所以
第 3 页,共 49 页
所以X 与Z 不相关. 为证明X 与Z 是不独立的,我们考查如下特定事件的概率,且对其使用全概率公式
考虑到而
所以
故有
即X 与Z 不独立.
:
8. 试分别设计一个概率模型问题,用其解答证明以下恒等式
(1)(2)(3)
【答案】设计如下的试验,计算相应的概率,即可证得相应的恒等式.
(1)口袋中装有N 个球,其中m 个为白球. 从中每次取出一球,不放回. 试求迟早取到白球的概率. 因为袋中N 个球中只有m 个白球,在不放回抽样场合,可能第1次抽到白球,或第2次抽到白球,……,或最迟在N —m+1次必取到白球,若记P k 为第k 次取到白球的概率,则有
且
即
对上式两边同乘N/m即得(1). 而(2)(3)两个等式可在如下设计的试验中获得证实. (2)口袋中装有N 个球,其中m 个为白球. 从中每次取出一球,若取出白球,则放回;若取出的不是白球,则换一个白球放回. 试求迟早取到白球的概率.
(3)口袋中装有N 个球,其中m 个为白球. 从中每次取出一球后放回,若取出的不是白球,则不仅放回,且追加一个白球进去. 试求迟早取到白球的概率.
9. 设是来自的样本,为其次序统计量,令
证明【答案】令作变换
第 4 页,共 49 页
相互独立.
则
的联合密度函数为