2017年武汉大学概率论与数理统计复试仿真模拟三套题
● 摘要
一、计算题
1. 掷一颗骰子4次,求点数6出现的次数的概率分布.
【答案】记X 为掷4次中点数6出现的次数,则X 的可能取值为0,1,2,3,4. 由确定概率的古典方法得
将以上结果列表为
表
由以上的计算结果也可以看出:出现0次6点的可能性最大.
2. 下面给出两种型号的计算器充电以后所能使用的时间(单位:h )的观测值
表
设两样本独立且数据所属的两正态总体方差相等,且均值至多差一个平移量. 试问能否认为型号A 的计算器平均使用时间明显比型号B 来得长(取
)?
【答案】这个问题可归结为关于两总体的均值是否相等的检验问题. 两正态总体方差相等但仍未知,故应采用两样本t 检验. 设X 表示型号A 的计算器充电以后所能使用的时间,Y 表示型号B 的计算器充电以后所能使用的时间,则依题意,
经计算,
从而
其拒绝域为
查表知:
第 2 页,共 15 页
待检验的假设为:
由于检验统计量的
取值t >2.5176, 故拒绝可以认为型号A 的计算器平燧使用时间明显比型号B 来得长.
3. 甲口袋有5个白球、3个黑球,乙口袋有4个白球、6个黑球,从两个口袋中各任取一球,求取到的两个球颜色相同的概率.
【答案】从两个口袋中各取一球,共有出黑球,这共有
种取法,于是
4. 设随机变量X 的分布函数为
试求
5. 现收集了16组合金钢中的碳含量x 及强度y 的数据,
求得
(1)建立y 关于x 的一元线性回归方程(2)写出(3)求
的分布; 的相关系数;
种等可能取法,而两个球颜色相同有两种情况:
第一种是从甲口袋取出白球、从乙口袋也取出白球;第二种是从甲口袋取出黑球、从乙口袋也取
【答案】这里X 是连续随机变量,所求概率分别为
(4)列出对回归方程作显著性检验的方差分析表(5)给出的0.95置信区间;
(6)在x=0.15时求对应的y 的0.95预测区间.
【答案】(1)根据已知数据可以得到回归系数的估计为
于是y 关于x 的一元线性回归方程为
(2)我们知道
利用已给数据可计算出
第 3 页,共 15 页
由此可得到(3)由于
的分布分别为
故
的相关系数为
(4)首先计算三个平方和
于是可建立如下方差分析表:
表
若取显著性水平值为
查表知拒绝域为此处检验统计
量落入拒绝域,因此,在显著性水平0.05下回归方程是显著的. 此处,回归方程显著性检验的p
这是一个很小的概率,说明回归方程显著性很高. (5)由定理知,
区间为
其中
当
时,
由此可得到
(6)首先算出x=0.15对应的y 的预测值为
而
第 4 页,共 15 页
且与相互独立,因此的置信
的置信区间为
相关内容
相关标签