2017年上海理工大学理学院811概率论与数理统计考研仿真模拟题
● 摘要
一、证明题
1. 设不是有效估计.
【答案】设
是0的任一无偏估计,则
即
将(*)式两端对求导,并注意到
有
这说明
由此可以得到则
从而,进一步,
为的UMVUE.
C-R 下界为
故此UMVUE 的方差达不到C-R
记
求的UMVUE. 证明此UMVUE 达不到C-R 不等式的下界,即它
我们将(**)式的两端再对H 求导,得
不等式的下界.
2. 验证:泊松分布的均值λ的共轭先验分布是伽玛分布.
【答案】泊松分布的概率函数为数为
对来自泊松分布
的样本
的后验分布为
若的先验分布为伽玛分布,其密度函
即的后验分布为
仍为伽玛分布,这说明伽玛分布是泊松分布的均值的
共轭先验分布.
3. 设是来自Rayleigh 分布Ra (θ)的一个样本,Rayleigh 分布的密度函数为
(1)求此分布的充分统计量;
(2)利用充分统计量在给定显著性水平下给出如下检验问题
的拒绝域;
(3)在样本量较大时,利用中心极限定理给出近似拒绝域. 【答案】(1)样本的联合密度函数为
由因子分解定理知,的充分统计量是(2)注意到
由此可见
是
的无偏估计.
当
较大时,
拒绝原假设
是合理的.
故对
的拒绝域为
其中c 由概率等式可以证明,
当
在原假设由等式
成立下,有
可得
利用分布的分位数可确定临界值c.
时
,
确定. 为了确定c , 需要充分统计量
由此可
得
的分布.
或
者
记
是分布的
分位数,可得
譬如,当n=15,即当检验统计量(3)由
可知
时,
所以 c=21.887.
时,将拒绝原假设
从而有
在原假设
成立下,有
这
里
可看作n 个相互独立同分布随机变量之和,故由中心极限定理
知
, 从而有
故由等式
可得
记
即
若n=15,
查表得
从而
4. 设事件A ,B ,C 的概率都是1/2,且P (ABC )=+P(AC )+P(BC )-1/2.
【答案】因为
上式移项即得结论.
5. 设A ,B ,C 三事件相互独立,试证A —B 与C 独立.
【答案】因为
所以A-B 与C 独立.
认为
为标准正态分布的分位数,则有
证明:2P (ABC )=P(AB )