2017年上海理工大学光电息与计算机工程学院831高等代数考研导师圈点必考题汇编
● 摘要
一、计算题
1. 设在xOy 面上有一质量为M 的质量均匀的半圆形薄片,占有平面闭区域
,过圆心。垂直于薄片的直线上有一质量为m 的质点P ,OP=a。
求半圆形薄 片对质点P 的引力。
【答案】 积分区域
,于是
由于D 关于y 轴对称,且质量均匀分布,故F x =0。又薄片的面密度
所求引力为
2. 设抛物线y=ax2+bx+c通过点(0,0),且当x ∈[0, 1]时,y ≥0。试确定a ,b ,c 的值,使得抛物线y=ax+bx+c与直线x=1,y=0所围图形的面积为,且使该图形绕x 轴旋转而成的旋转体的体积最小。
,可得c=0。 【答案】由已知条件:抛物线y=ax+bx+c通过点(0,0)抛物线y=ax+bx+c与直线x=1,y=0所围图形的面积为
从而得到
,即
。该图形绕x 轴旋转而成的旋转体的体积为
第 2 页,共 54 页
2
2
2
因此当b=2时体积最小,此时此抛物线满足y ≥0, 故所求解:
,抛物线为
,b=2,c=0符合题目要求。
,在区间[0, 1]上,
3. 试举出具有以下性质的函数f (x )的例子:
是f (x )的所有间断点,且它们都是无穷间断点。
【答案】设
,显然f (x )具有所要求的性质。
4. 汽车以20m/s的速度行驶, 刹车后匀减速行驶了50m 停住, 求刹车加速度。可执行下列步骤:
(l )求微分方程(2)求使(3)求使【答案】由
, 得
, 故
由(2)令
, 得
, 于是所求的解为, 解得
,
,
即
, 解得k=4, 即得刹车加
速度为
的t 值; 的k 值。
, 满足条件
的解;
(3)根据题意,
当
。
5. 写出下列级数的前五项:
【答案】
第 3 页,共 54 页
6. 求图中各画斜线部分的面积:
【答案】(1)解方程组得到交点坐标为(0, 0)和(1, 1)。
如果取x 为积分变量,则z 的变化范围为[0, 1],相应于[0, 1]上任一小区间[x,x+dx]的窄条面积近似于高为
、底为dx 的窄矩形的面积,因此有
如果取y 为积分变量,则y 的变化范围为[0, 1],相应于[0, 1]上任一小区间[y,y+dy]的窄条面积近似于高为dy 、宽为y-y 的的窄矩形面积,因此有
2
(2)取x 为积分变量,则易知x 的变化范围为[0,l],相应于[0,l]上的任一小区间[x,x+dx]
x
的窄条面积 近似于高为e-e 、底为dx 的窄矩形的面积,因此有
如果取y 为积分变量,则易知y 的变化范围为[l,e],相应于[l,e]上的任一小区间[y,y+dy]的窄条面积 近似于高为dy 宽为lny 的窄矩形的面积,因此有
第 4 页,共 54 页
相关内容
相关标签