当前位置:问答库>考研试题

2017年西安交通大学数学与统计学院818高等代数与线性代数考研仿真模拟题

  摘要

一、选择题

1. 设A 、B 为满足AB=0的任意两个非零矩阵. 则必有( ).

A.A 的列向量组线性相关,B 的行向量组线性相关 B.A 的列向量组线性相关,B 的列向量组线性相关 C.A 的行向量组线性相关,B 的行向量组线性相关 D.A 的列向量组线性相关,B 的列向量组线性相关 【答案】A 【解析】方法1:设由于

又由方法2:设考虑到

不妨设线性相关.

由已知及以上证明知B ’的列线性相关,即B 的行向量组线性相关.

由于AB=0, 所以有

即r (A )>0, r (B )>0, 所以有

R (A )

故A 的列向量组及B 的行向量组均线性相关.

2. 设向量组线性无关,则下列向量组中,线性无关的是( )

【答案】C 【解析】方法1:令

则有

线性无关知,

该方程组只有零解方法2:对向量组C ,由于

从而

线性无关,且

线性无关.

并记A 各列依次为

由于AB=0可推得AB

的第一列

从而

因为所以向量组线性无关.

3. 设A 、B 、C 均为n 阶矩阵,E 为n 阶单位矩阵,如B=E+AB, C=A+CA, 则B —C 为( ).

A.E B.-E C.A D.-A

【答案】A

【解析】由题设(E-A )B=E, 所以有

B (E-A )=E.

又C (E-A )=A,故

(B-C )(E-A )=E-A.

结合E-A 可逆,得B-C=E.

4. 设A 为3阶矩阵,将A 的第2行加到第1行得8, 再将B 的第1列的一1倍加到第2列得C ,

A. B. C. D.

【答案】B

则( ).

【解析】由已知,有

于是

5. 设A 为3阶矩阵,将A 的第2列加到第1列得B ,再交换B 的第2行与第3行得单位矩阵

.

A. B. C.

D.

【答案】D 【解析】由题设知所以

二、分析计算题

6. 已知

的线性变换在基

下的矩阵为

求在基

下的矩阵. 【答案】因为

记上式右端的4阶矩阵为P , 则在基下的矩阵是

7. 设B 是实数域上

【答案】(1)

(2)

矩阵,对任一大于0的常数n , 证明定义了

单位矩阵.

的一个内积,使得成为欧氏空间. 其中表示列向量的转置,E 表示