当前位置:问答库>考研试题

2016年华中科技大学管理学院885运筹学(一)[专业硕士]考研必备复习题库及答案

  摘要

一、简答题

1. 试写出M/M/1排队系统的Little 公式。 【答案】M/M/1排队系统的Little 公式为

2. 试将Norback 和love 提出的几何法与C 一W 节约算法进行比较。

【答案】(1)几何法:首先找出凸包,然后考查以不在旅行线路上的点为角顶,以线路上的点的连线为对边的角的大小,选出最大者所对应的角顶,插入到旅行线路中,反复进行直至形成哈密尔顿回路。

(2)C 一W 节约算法:首先以某一点为基点,确定初始解,然后考查基点之外的其它点的连线所构成的弧的 节约值的大小,选出节约值最大者所对应的弧,插入到旅行线路中,直至旅行线路中包含所有的点。

3. 在线性规划的灵敏度分析中,当基变量的价值系数变化后,最优表中哪些数据会发生变化,怎样变化。

【答案】基变量的价值系数变化后,可能会引起伏表中基变量检验数的变化。 设Cr 是基变量Xr 的系数。因

,当Cr 变化△Cr ,时,就引起C B 的变化,这时有:

可见,当Cr 变化成△Cr 后,最终表中的检验数是:

二、证明题

4. 证明:(1)若(2)若

是对策G 的两个解,则

也是对策G 的解。

是对策G 的两个解,则是G 的解,所以

【答案】(1)因为

同理,因为是G 的解,所以

由不等式①可知

由不等式②可知

由不等式③与不等式④可知

(2)由(1)证明过程中不等式③和不等式④可知即解。

5. 对于单服务台情形,试证: (1)定长服务时间长服务时间【答案】对于

是负指数服务时间

排队系统,

的一半。

,即可知,

也是

,是负指数服务时间的一半; (2)定

当k=l时,则

变成M 分布,即上式指标变成M/M/1排队系统指标,即

当k →∞时,则

分布变成D 分布,即上式指标变成M/D/l排队系统指标,即

所以,

定长服务时间

的一半。

6. 设G=(V ,E )是一个简单圈,令证明:(l )若(2)若

,则G 必有圈; ,则G 必有包含至少

条边的圈。

,假设

(称

为G 的最小次)。

是负指数服务时间

的一半;

定长服务时间

是负指数服务时间

(3)设G 是一个连通图,不含奇点。证明:从G 中丢失任一条边后,得到的图仍是连通图。 【答案】(l )因为G (V ,E )是一个简单圈,故该图中无环,也无重复边。若G 中无圈,则G 可能是树或非连通图,这两种情况均存在悬挂点,即

相矛盾。故假设不成立, 所以,G 必有圈。

(2)若的次至少为

,设与,也至少与

对应的点为v k ,则v k

必与个端点相连。如果v k 与v i

个端点相连。由(l )的结论知,G

个端点不构成圈,那么在端

条边的圈。

v k 至少与这中必有圈(由于对圈中的连通图而言,点处必向外延伸(因为最小次为另一端点,对该圈而言,边数大于

个端点构成圈)。

, 不与其中某点相连,必与其外某点相连)经连通链而到

条,故G 必定 是包含不少于占

(3)证明:因为G 连通且不含奇点,故d (v )=2n,且该图中无悬挂点。由题(l )的结论知,G 必有圈。又因为G 是连通的,所以从G 中去掉任一条边,都必在某一圈中。而从圈中去掉任一条边,所得图仍是连通图。