2017年哈尔滨师范大学数学科学学院843概率论与数理统计考研强化模拟题
● 摘要
一、证明题
1. 设为一事件域,
若
试证: (1)(2)有限并(3)有限交(4)可列交(5)差运算【答案】(1)因为(2)构造一个事件序列
由此得(3)因为(4)因为(5)因为
所以所以所以
由
由
由(3)(有限交)得
得得
为一事件域,所以
其中
故其对立事件
2. 验证:正态总体方差(均值已知)的共轭先验分布是倒伽玛分布.
【答案】设总体玛分布
,其密度函数为
则的后验分布为
,其中已知,
为其样本,取
的先验分布为倒伽
即
值已知)的共轭先验分布.
3. 证明:
(1)(2)
【答案】(1)由
移项即得结论.
这就证明了倒伽玛分布是正态总体方差(均
4. 设随机变量X 有密度函数p (x ), 且密度函数p (x )是偶函数, 假定Y=
不相关但不独立. 【答案】因为
与Y 不相互独立, 特给定a>0, 使得
所以
(2)对n 用数学归纳法,当n=2时,由(1)知结论成立. 设n-1时结论成立,即
则由(1)知
证明:X 与不相关. 为证明X
这表明:X 与
现考查如下特定事件的概率
所以X 与不独立.
5. 同时掷5枚骰子,试证明:
(1)P (每枚都不一样)=0.0926; (2)P (一对)=0.4630; (3)P (两对)=0.2315; (4)P (三枚一样)=0_1543; (5)P (四枚一样)=0.0193; (6)P (五枚一样)=0.0008. 【答案】同时掷5枚骰子共有(1)
2枚组成“一对”,共有以
个样本点,这是分母,以下分别求之.
种取法,然后这“一对”骰子与剩下的3枚骰子出现的点数都不一样,所
(2)这里“一对”是指这一对以外的3枚骰子中不成对且不全相同,所以先从5枚骰子中任取
(3)先将5枚骰子分成三组,其中二组各有2枚殷子,另外一组只有一枚殷子,又考虑到各有2枚骰子的二组内是不用考虑顺序的,所以5枚骰子分成三组共有而这三组骰子出现的点数都不一样有
种可能,所以所求概率为
(4)这里“三枚一样”是指这三枚以外的2枚骰子不成对,所以先从5枚骰子中任取3枚组成一组,共有(53)种取法,然后这一组骰子与剩下的2枚骰子出现的点数不一样,所以
(5)先从5枚骰子中任取4枚组成一组,然后这一组骰子与剩下的一枚骰子各取不同的数,由此得
(6)五枚骰子出现的点数全部一样共有6种情况,所以
6. 设总体X 服从双参数指数分布, 其分布函数为
其
中明,
【答案】令
服从自由度为2的(1), 则
为样本的次序统计量. 试证分布
的联合密度为
作变换
种分法,
其雅可比(Jacobi )行列式为合密度我们可以知道
的联合密度为
从而
由该联
是独立同分布的随机变量, 且
相关内容
相关标签