2017年昆明理工大学理学院843高等代数考研仿真模拟题
● 摘要
一、选择题
1. 设
是非齐次线性方程组
的两个不同解,
是
的基础解系,
为任意常数,
则Ax=b的通解为( )•
【答案】B 【解析】因为中
不一定线性无关. 而
由于
因此
线性无关,且都是
知
的解. 是
的特解,因此选B.
所以
因此
不是
的特解,从而否定A , C.但D
故是的基础解系. 又由
2. 设A ,B 为同阶可逆矩阵,则( ).
A.AB=BA
B. 存在可逆阵P ,使
C. 存在可逆阵C 使【答案】D 【解析】 3. 设
D. 存在可逆阵P ,Q ,使PAQ=B
则3条直线
(其中
)交于一点的充要条件是( )
.
【答案】D 【解析】令其中
则方程组①可改写为
则3条直线交于一点
线性无关,由秩
方程组①有惟一解
由秩A=2, 可知可知线性相关,即可由线性表出,
从而
可由线性表出. 线性相关,故选D.
4. 在n 维向量空间取出两个向量组,它们的秩( ).
A. 必相等
B. 可能相等亦可能不相等 C. 不相等 【答案】B 【解析】比如在
若选
从而否定A ,
若选
从而否定C ,
中选三个向量组
故选B.
5. 设A 为n 阶可逆矩阵,交换A 的第1行与第2行得B ,则有( ).
A. 交换A*的第1列与第2列得B* B. 交换A*的第1行与第2行得B* C. 交换A*龙第1列与第2列得-B* D. 交换A*的第1行与第2行得-B* 【答案】C
【解析】解法1:题设P (1, 2)A=B,所以有
又
所以有
即A*右乘初等阵P (1,2)得-B*
解法2:题设P (1,2)A=B,所以丨B 丨=-丨A 丨. 因此
分别为A ,B 的伴随矩阵,
即
二、分析计算题
6. 设n 阶行列式
求D 展开式的正项总数.
【答案】由于D 中元素都是±1,因此D 的展开式n! 项中,每一项不是1就是-1, 设展开式中正项总数为P , 负项总数为q ,那么有
由
得
下面计算D ,用第n 行分别加到其它各行得
将④代入③得
7. 设
是任意复数,求循环行列式
的值.
【答案】设
其中是全部n 次单位根,又令