当前位置:问答库>考研试题

2018年杭州师范大学教育学院312心理学专业基础综合之现代心理与教育统计学考研强化五套模拟题

  摘要

一、概念题

1. 非参数检验

【答案】非参数检验指对总体分布形式所知甚少,需要对未知分布函数的形式及其他特征进行假设检验。常见的非参数检验有符号检验、秩和检验、中数检验等。其优点:(1)不需要对被检验的总体作出关于正态性或其他特定分布的假定;(2)容易理解、容易操作、应用范围广。缺点是功效较低,因为它常会丢失数据中的信息。经常属于大样本检验。

2. 逐步回归

【答案】逐步回归是多元回归中选择自变量,建立最优回归方程的一种方法。其基本原理和过程是:按各个自变量对因变量作用的大小,从大到小逐个引入回归方程。每引入一个自变量都要对回归方程中每一个自变量(包括刚刚引入的那个)的作用进行显著性检验,若发现作用不显著的自变量,就要将其剔除(因为引入新的自变量后,原来方程中显著作用的自变量有可能变成不显著)。这样逐个地引进和剔除,直至没有自变量可引入也没有自变量应从方程中剔除为止,这时的回归方程一般来说是最优的。

3. 概率

【答案】概率(probability ),概率论术语指,随机事件发生可能性大小度量指标。①概率描述性定义。随机事件A 在所有试验中发生可能性大小的量值,称为事件A 的概率,记为P (A )。如将一枚均匀硬币上抛足够多次,会发现“正面朝上”的事件出现的频率在0.5上下波动。这种频率稳定性从实践上表明随机事件的概率是客观存在的。②概率的精确定义。设P 是定义在“事件域”上的一个集合函数,若满足下列条件,则称之为概率:

a.P

两互不相容对一

切,则

(性质(ⅲ)称为完全可加性)。若P 是概率,则不可能事件的概率为零,即对任意事件有应当注意,若P (A )=0, 并不能说A —定是不可能事件,即不可能事件的概率一定是零,但概率为零的事件未必是不可能事件。这是由于P 是集合函数,可能在某些点集上(如有限个点)为零。同理,概率为1的事件,未必是必然事件。

4. 协方差分析

【答案】协方差分析指回归分析与方差分析相结合的一种统计分析方法。是将难以直接控制

的变量作为协变量影响的条件下,更准确地分析与评价因素对因变量的影响。它与方差分析的不同之处在于:方差分析的各因素水平可以根据需要和实际情况人为地加以控制,而在协方差分析中,某些因素的水平是不能控制或难以控制的。如在考察不同教学方法对学生学习成绩有无显著性影响的过程中,如果只考虑教学方法对学生学习成绩的作用,而不考虑学生的智力水平和学习基础这两个不能精确控制的因素对学生学习成绩的影响,将会影响判断的准确性。协方差分析可以消除这种不可控因素的影响,提高分析的精度。教学方法是可以人为控制的因素,称为方差因素,而学生的智力和学习基础是不能精确控制的因素,称为协变量。协方差分析的基本方法是先对每一水平下的实验结果进行回归分析,求出扣除协变量以后的残值,再将各水平试验下对应的残值进行方差分析。协方差分析适合于完全随机化设计资料、随机化区组设计资料、拉丁方资料等。

二、简答题

5. 简述使用积差相关系数的条件。

【答案】积差相关又较积矩相关,是求直线相关的基本方法。积差相关系数适合的情况如下:

(1)两列数据都是测量数据,而且两列变量各自总体的分布是正态的,即正态双变量。为了判断计算相关的两列变量其总体是否为正态分布,一般要根据已有的研究资料进行查询。如果没有资料查询,研究者应取较大样本分别对两变量作正态性检验。这里只要求保证双变量总体为正态分布,而对要计算相关系数的两样本的观测数据并不一定要求正态分布。

(2)两列变量之间的关系应是直线性的。如果是非直线性的双列变量,不能计算线性相关。判断两列变量之间的相关是否直线式,可以作相关散布图进行线性分析。相关散布图是以两列变量中的一列变量为横坐标,以另一变量为纵坐标,画散点图。如果呈椭圆形则说明两列变量

是线性相关的,如果散点是弯月状(无论弯曲度大小或方向),说明两变量之间呈非线性关系。

(3)实际测验中,计算信度涉及的积差相关时,分半的两部分测验须满足在平均数、标准差、分布形态、测题间相关、内容、形式和题数都相似的假设条件。

另外,积差相关要求成对的数据,即若干个体中每个个体都有两种不同的观测值。任意两个个体之间的观测值不能求相关。每对数据与其他对数据相互独立。计算相关的成对数据的数目不少于30对,否则数据太而缺乏代表性。

6. 二项试验应满足哪些条件?

【答案】二项试验又叫贝努里实验。它需要满足的条件有:

(1)任何一次试验恰好有两个结果,成功与失败,或A 与

(2)共有n 次试验,并且n 是预先给定的任一正整数。

(3)各次试验相互独立,即各次试验之间无相互影响。

例如投掷硬币的实验属于二项试验,每次只有两个可能结果;正面向上或反面向上。如果

一个硬币投掷10次,或10个硬币投掷一次,这时独立试验的次数n=10。再如选择题组成的测验,选答不是对就是错,只有两种可能结果,也属于二项试验。但在一般的心理和教育试验中,很难保证第一次的结果完全对第二次结果无影响。比如,前面的题目的选答可能对后面的题目的回答有一定的启发或抑制作用,这时只能将它假设为近似满足不相互影响。

(4)任何一次试验中成功或失败的概率保持相同,即成功的概率在第一次为P (A ), 在第n 次试验中也是P (A ),但成功与失败的概率可以相等也可以不相等。这一点同第三点一样,有时较难保证,实验中需要认真分析,必要时仍可假设相等。例如,某射击手的命中率为0.70, 但由于身体状态、心理状态的变化,在每一次射击时,命中率并不能保证都准确地是0.70, 但为了计算,只可假设其相等。

凡是符合上述要求的实验称为二项试验。

7. 圆形图适合哪种资料? 自选数据绘制圆形图。

【答案】圆形图(circle graph), 又称饼图(pie ),主要用于描述间断性资料,目的是为显示各部分在整体中所占的比重大小,以及各部分之间的比较。)圆形图显示的资料多以相对数(如百分数)为主。

8. 在心理学研究中,以样本对总体判断的数理理论依据。

【答案】(1)在心理学研究中,以样本对总体判断必须以一定的统计理论为基础。推论统计的理论和原理包括抽样理论、估计理论和统计检验原理。

①抽样理论及其方法主要讨论在什么情况下可以从样本的特性推论出总体的特性。其中一个最重要的条件就是样本抽取的原则,只有抽样具有随机性,才能保证推论具有某种程度的准确性。

②估计理论主要是根据随机抽样的结果来估计总体分布的参数值,分为点估计和区间估计。

③统计检验主要是根据实际的抽样结果来推论有关总体特征的假设是否与具体的随机抽样所提供的信息相一致。

(2)当总体参数不清楚时,用一个特定值,一般就是样本统计量对总体参数进行估计。以样本对总体判断的数理理论依据是样本分布理论,即概率发生的机会。统计分析中一般认为,0.05或0.01属于小概率事件,小概率事件在一次抽样中是不可能出现的。

样本分布的规律:

①样本统计量为正态分布或接近正态分布的两种情况,凡符合这两种情况的分布,都可以根据正态分布的概率进行统计推论。

②总体分布非正态,但方差己知,这时当样本足够大时其样本平均数的分布 为渐进正态分布,接近正态分布的程度与样本n 及总体偏斜程度有关。

③依据随机取样原则,自正态分布的总体中抽取容量为n 的样本,当n 足够大时

样本方差及标准差的分布,渐趋正态分布。

(3)假设检验是通过样本统计量得出的差异做出一般性结论,判断总体参数之间是否存在