当前位置:问答库>考研试题

2018年哈尔滨师范大学教育科学学院701心理学基础综合之现代心理与教育统计学考研强化五套模拟题

  摘要

一、概念题

1. 抽样误差

【答案】抽样误差指由抽样而造成的样本参数与总体参数之间差异或各样本参数之间差异。比如:样本平均数与总体平均数之间差异或各样本平均数之间差异。在抽样研究中,抽样误差是不可避免的,但可以估计其大小。

2. 非参数检验

【答案】非参数检验指对总体分布形式所知甚少,需要对未知分布函数的形式及其他特征进行假设检验。常见的非参数检验有符号检验、秩和检验、中数检验等。其优点:(1)不需要对被检验的总体作出关于正态性或其他特定分布的假定;(2)容易理解、容易操作、应用范围广。缺点是功效较低,因为它常会丢失数据中的信息。经常属于大样本检验。

3. 个体

【答案】个体(individual )亦称“单位”、“样品”,统计学术语指总体中的每一个单位、样品或成员。是统计调查、试验或观测的最基本对象,是构成样本、总体的最小单元。在心理学研宄中,个体根据研宄目的不同,可以是人,也可以是人在某种实验条件下的某个反应,或每个实验结果、每个数据。

4. 标准误差

【答案】标准误差指描述样本均值对总体期望值的离散程度的统计量。指样本平均数与总体平均数之间的误差,即随机抽样误差分布的标准差。样本平均数的标准误差与总体标准差成正比,与样本的容量的平方根成反比。公式为:式中为总体标准差,N 为样本的大小。标准误差是具体描述样本平均数的抽样误差的。标准误误愈大,抽样误差愈大,则样本平均数越不可靠;反之,标准误差越小,表明样本误差愈小,样本平均数越可靠。

二、简答题

5. 简述方差分析法的步骤。

【答案】方差分析法的步骤是:

(1)和一般的假设检验一样设立零假设和研究假设;

(2)根据实验设计的类型确定各变异源,进行相应的平方和分解,即有几个变异源就从总

平方和中分解出几个平方和;

(3)根据平方和分解得到各变异源对应的自由度,即进行总自由度的分解;

(4)根据研究的目的和实验设计考虑要检验什么效应,从而将其对应的平方和比上相应的自由度得到该效应的均方,其中误差均方必须计算;

(5)将各待检验效应的均方比上误差的均方,计算各F 统计量;

(6)将计算来的各F 统计量值和F 检验的临界值进行比较得出统计结论,其中临界值的分子自由度和分母自由度分别是待检验效应的自由度和误差自由度;

6. 正态分布的特征是什么,统计检验中为什么经常要将正态分布转化成标准正态分布?

【答案】正态分布也称常态分布或常态分配。是连续随机变量概率分布的一种。描述正态分布曲线的一般方程为:

式中:是圆周率3.1415…

是自然对数的底2.71828…

为随机变量取值为理论平均数

为理论方差

为概率密度,即正态分布的纵坐标。

(1)正态分布的特征

①正态分布的形式是对称的,它的对称轴是经过平均数点的垂线,正态分布中,平均数、中数、众数三者相等,此点y 值最大(0.3989)。左右不同间距的y 值不同,各相当间距的面积相等,y 值也相等。

②正态分布的中央点(即平均数点)最高,然后逐渐向两侧下降,曲线的形式是先向内弯,然后向外弯,拐点位于正负1个标准差处,曲线两端向靠近基线处无限延伸,但终不能与基线相交。

③正态曲线下的面积为1, 由于它在平均数处左右对称,故过平均数点的垂线将正态曲线下的面积划分为相等的两部分,即各为0.50。正态曲线下各对应的横坐标(即标准差)处与平均数之间的面积可用积分公式计算。因正态曲线下每一横坐标所对应的面积与总面积(总面积为1)之比其值等于该部分面积值,故正态曲线下的面积可视为概率,即值为每一横坐标值(x 加减一定标准差)的随机变量出现的概率。

④正态分布是一族分布。它随机变量的平均数、标准差的大小与单位不同而有不同的分布形态。如果平均数相同,标准差不同,这时标准差大的正态分布曲线形式低阔;如果标准差小,则正态曲线的形式高狭。

⑤正态分布下,标准差与概率有一定数量关系。

(2)统计检验中经常将正态分布转化为标准正态分布是因为标准正态分布的Z 分数不仅能表明原始分数在分布中的地位,而且能在不同分布的各个原始分数之间进行比较,同时,还能用代数方法处理,因此,它被教育统计学家称为“多学科表示量数”,有着广泛的用途。

①用于比较几个分属性质不同的观测值在各自数据分布中相对位置的高低。

Z 分数可以表明各个原始数据在该组数据分布中的相对位置,它无实际单位,可对不同的观测值进行比较。这里所说的数据分布中相对位置包括两个意思,一个是表示某原始数据以平均数为中心以标准差为单位所处距离的远近与方向;另一个意思是表示某原始数据在该组数据分布中的位置, 即在该数据以下或以上的数据各有多少。如果在一个正态分布(或至少是一个对称分布)中,这两个意思可合二为一。但在一个偏态分布中,这两个意思就不能统一。

在实际的教育与心理研究中,经常会遇到属于几种不同质的观测值,此时,不能对它们进行直接比较,但若知道各自数据分布的平均数与标准差,就可分别求出Z 分数进行比较。

一个原始分数被转换为Z 分数后,就可知道它在平均数以上或以下几个标准差的位置,从而知道它在分布中的相对地位。当原始分数的分布是正态分布时,只要求出分布中某一原始分数的Z 分数,就可以通过查正态分布表得知此原始分数的百分等级,从而知道在它之下的分数个数占全部分数个数的百分之几,进一步明确此分数的相对地位。

②计算不同质的观测值的总和或平均值,以表示在团体中的相对位置。

不同质的原始观测值因不等距,也没有一致的参照点,因此不能简单地相加或相减。计算平均数时要求数据必须同质,否则会使平均数没有意义。但是,当研究要求合成不同质的数据时,如果已知这些不同质的观测值的次数分布为正态,这时可采用Z 分数来计算不同质的观测值的总和或平均值。

③表示标准测验分数。

经过标准化的教育和心理测验,如果其常模分数分布接近其正态分布,为了克服标准分数出现的小数、负数和不易为人们所接受等缺点,常常是将其转换成正态标准分数。转换公式为:

式中:

为经过转换后的标准正态分数

A 、B 为常数

指转换前的标准分数,a 为测验常模的标准差。

标准分数经过这样的线性转换后,仍然保持着原始分数的分布形态,同时仍具有原来标准分数的一切优点。例如,早期的智力测验中是运用比率智商(IQ )作为智力测查的指标。