当前位置:问答库>考研试题

2018年东南大学学习科学中心947神经信息工程基础之现代心理与教育统计学考研基础五套测试题

  摘要

一、概念题

1. 次数

【答案】次数是指某一事件在某一类别中出现的数目,又称为频数(frequency ), 用f 表示。

2. 统计量

【答案】统计量(statistic ),统计学术语,指不含未知参数的样本的函数。设有一总体X

是取自x 的一个随机样本,

数,则称

统计量,是一个统计量。如,样本均值是不包含任何未知参数的函是一个也是一个统计量。在各种不同的统计分析或推断中,

,若数学期望y 未知,可并不直接使用随机样本,而是将随机样本“加工”为统计量。在解决不同问题时有不同的统计量,统计量是直接用来进行分析或推断的重要工具。如正态总体

用样本均值X 去估计;在两个总体的均值差异显著性检验时,要运用Z 统计量或t 统计量。

3. 假设检验

【答案】在统计学中,通过样本统计量得出的差异作出一般性结论,判断总体参数之间是否存在差异,这种推论过程称假设检验。假设检验是推论统计中最重要的内容,它的基本任务就是事先对总体参数或总体分布形态做出一个假设,然后利用样本信息来判断原假设是否合理,从而决定是否接受原假设。检验的推理逻辑是一定概率保证下的反证法。一般包括四个步骤:(1)根

据问题要求提出原假设 (2)寻找检验统计量,用于提取样本中的用于推断的信息,要求在Ho 成立的条件下,统计量的分布已知且不包含任何未知参数;(3)由统计量的分布,计算“概率值”或确定拒绝域与接受域;(4)由具体样本值计算统计量的观测值,对统计假设作出判断。若Ho 的内容涉及到总体参数,称为参数假设检验,否则为非参数检验。

4. 集中量数与差异量数

【答案】集中量数与差异量数都是描述一组数据特征的统计量。集中量数是表现数据集中性质或集中程度的,数据的集中情况指一组数据的中心位置;集中趋势的度量即确定一组数据的代表值,描述集中情况的度量包括:算术平均数、中位数、众数、几何平均数、调和平均数和加权平均数等。差异量数是表现数据分散性质或分散程度的,数据的差异性即为离中趋势;常见的差异量数有标准差或方差、全距、平均差、四分差和各种百分差等。

二、简答题

5. 应用标准分数求不同质的数据总和时应注意什么问题?

【答案】应用标准分数求不同质的数据总和时应注意这些不同质的观测值的次数分布应该是正态的。因为标准分是线形变化,不改变原分布的形态,只有原分布是正态时,转化后的标准分才是正态的。

6. 品质相关有哪几种? 各种品质相关的应用条件是什么?

【答案】(1)四分相关,适用条件:四格表的二因素都是连续的正态变量,如学习能力,身体状态等,只是人为将其按一定标准划分为两个不同的类别,如“好”与“不好”,“对”与“错”等,即一因素划分为“A”与“非A”两项,另一因素划分为“B”与“非B”两项。

(2)系数,适用资料是除四分相关之外的四格表(计数)资料,是表示两因素两项分类资料相关程度最常用的一种相关系数。

(3)列联相关,当数据属于

两变量的相关程度。

7. 一个变量的两个水平间的相关很高,是否说明两水平的均数间没有差异呢?为什么?举例说明。

【答案】不能说明两水平的均数间没有差异。

(1)相关关系是指两类现象在发展变化的方向与大小方面存在一定的关系,但不能确定两类现象之间哪个是因,哪个是果。相关的情况可以有三种:一种是两列变量变动方向相同,即一种变量变动时,另一种变量也同时发生或大或小与前一种变量同方向的变动,称为正相关。如身高与体重的关系。第二种相关情况是负相关,这时两列变量中若有一列变量变动时,另一列变量呈或大或小但与前一列变量指向相反的变动。例如初打字时练习次数越多,出现错误的量就越少。第三种相关是零相关,即两列变量之间无关系。比如学习成绩与身高的关系。

(2)当一个变量的两个水平的相关很高时,需要考虑这种相关是正相关还是负相关,即考虑其变化发展的方向。

(3)当一个自变量的两个水平的相关很高时,不能说明两个水平的均数之间没有差异。因为两组变量的相关系数大小只是表明两组的线性关系强弱。即使两组变量成完全正相关,即相关系数为+1,也不能说明两组变量的平均数没有差异。比如两组变量的对应关系

为即这时两组变量的相关系数为+1,而两组变量的均数不不

同的。因为这是在同一个变量的不同水平,而且缺乏足够的信息分析。如果要知道这两个水平均数之间是否有差异,可以采用t 检验等方法获得。

8. 怎样理解总体、样本与个体?

【答案】(1)需要研究的同质对象的全体,称为总体。总体既可以是无限的也可以是有限

表的计数资料,欲分析所研究的二因素之间的相关程度,就要应用列联相关。当双变量的测量型数据被整理成次数分布表后,也可用列联相关系数表示

的。

(2)每一个具体研究对象,称为一个个体。

(3)从总体中抽出的用以推测总体的部分对象的集合称为样本。

样本中包含的个体数,称为样本的容量n 。一般把容量

的样本称为小样本。

的样本称为大样本;而

三、计算题

9. 已知从一正态总体中抽取两样沣

于?

【答案】根据公式得

,查表可知两方差之比小于

所以,两方差之比小于 ,问两样本方差比是否小

10.在特异功能实验中,五种符号不同的卡片在25张卡片中各重复五次。每次实验自25张卡片中抽取一张,记下符号,将卡片送回。共抽25次,每次正确的概率是1/5。写出实验中的二项式。问这个二项分布的平均数和标准差各等于多少?

【答案】已知

实验中的二项式为:

所以, 这个二项分布的平均数是5, 标准差是2。

11.决定样本容量时应考虑哪些因子?

【答案】(1)参数估计在样本平均数的分布中

当α=0.05或0.01时,

因此

可以看到,进行平均数的估计时,当α确定后(0.05或0.01),总体标准差σ和最大允许误差d 是决定样本容量的两个因子。

(2)假设检验 设某总体平均数为样本平均数为当为真时,意味着所代表的总体平均与

,二项分布接近正态分布。

或2.58。此时