当前位置:问答库>考研试题

2017年西安工程大学理学院827高等代数考研冲刺密押题

  摘要

一、选择题

1. 在n 维向量空间取出两个向量组,它们的秩( ).

A. 必相等

B. 可能相等亦可能不相等 C. 不相等 【答案】B 【解析】比如在

若选故选B.

2. 设

A. 若B. 若C. 若D. 若【答案】A 【解析】因为当否则有

由上述知因此

线性相关,所以线性相关,故选A.

于是

线性无关时,若秩

线性相关. 由此可否定C ,D. 又由

线性无关,

从而否定A ,

若选

从而否定C ,

中选三个向量组

均为n 维列向量,A 是线性相关,则线性相关,则线性无关,则线性无关,则

矩阵,下列选项正确的是( ). 线性相关. 线性无关. 线性相关. 线性无关.

3. 设A 、B 均为2阶矩阵,A*,B*分别为A 、B 的伴随矩阵. 如果阵

A. B. C. D. 【答案】B 【解析】由题设

可逆,由于

的伴随矩阵为( ).

则分块矩

所以

4. 设

是非齐次线性方程组

的两个不同解,

的基础解系,

为任意常数,

则Ax=b的通解为( )•

【答案】B 【解析】因为中

不一定线性无关. 而

由于故是

5. 设向量组

因此

线性无关,且都是

的解. 是

的特解,因此选B.

所以因此不是的特解,从而否定A , C.但D

的基础解系. 又由

线性无关,则下列向量组中,线性无关的是( )

【答案】C 【解析】方法1:令

则有

线性无关知,

该方程组只有零解方法2:对向量组C ,由于

从而

线性无关,且

因为

所以向量组

线性无关.

线性无关.

二、分析计算题

6. 设A 是n 阶方阵,且

【答案】解法1因为

所以

又因为解法2因为

所以

由于所以

7. 设

求方阵P ,使

为A 的若当标准形.

是n 阶单位矩阵,,是A 的转置矩阵)