2017年中国矿业大学(徐州)矿业工程学院827数理统计考研仿真模拟题
● 摘要
一、证明题
1. 试用特征函数的方法证明伽玛分布的可加性:若随机变量与Y 独立, 则
【答案】因为
所以由X 与Y 的独立性得这正是伽玛分布
2. 设随机变量
(1)(2)
【答案】(1)设所以当即
时,
的密度函数为
即(2)因为以
由此得
所以(X , Y )的联合密度函数为
这说明X 和Y 是相互独立的标准正态随机变量.
3. 设A ,B ,C 三事件相互独立,试证A —B 与C 独立.
【答案】因为
第 2 页,共 46 页
, 且X
的特征函数, 由唯一性定理知
相互独立, 且都服从(0, 1)上的均匀分布, 试证明:
和
则
的密度函数为
则
所以
当
是相互独立的标准正态随机变量.
与
时,
, 所以
又因为
所
所以A-B 与C 独立.
4. 设总体X 的密度函数为:
为抽自此总体的简单随机样本.
(1)证明:【答案】(1)令
即
的分布与无关,并求出此分布.
的置信区间.
则
的分布与无关,其密度函数为
由于从而求得
在
上单调递减,为使得区间长度最短,故应取c=0, 所以,的置信水平为
的置信区间为
(2)取c , d 使得
的密度函数为
(2)求的置信水平为
5. 设二维随机变量(X , Y )服从单位圆内的均匀分布, 其联合密度函数为
试证:X 与Y 不独立且X 与Y 不相关 【答案】先求边际密度函数
所以由又因为
和
知X 与Y 不独立.
在对称区间上是偶函数, 故
从而
所以X 与Y 不相关.
6. 设连续随机变量X 的密度函数为p (X ), 试证:p (x )关于原点对称的充要条件是它的特征函数是实的偶函数.
【答案】记X 的特征函数为为
这表明X 与-X 有相同的特征函数,
从而X 与-X 有相同的密度函数, 而-X 的密度函数为关于原点是对称的.
再证必要性, 若
, 则X 与-X 有相同的密度函数, 所以X 与-X 有相同的特征函数,
第 3 页,共 46 页
先证充分性. 若是实的偶函数, 则又因
所以得, 即
由于-X 的特征函数为
7. 证明:若则对
所以有
故是实的偶函数.
并由此写出
与
其
中
【答案】由t 变量的结构知, t 变量可表示
为
且u 与v 独立, 从而有
由于
将两者代回可知, 在
时, 若r 为奇数, 则
若r 为偶数, 则
证明完成. 进一步, 当r=l时
, 时, 8. 若
为从分布族
为充分统计量.
【答案】样本X 的联合密度函数为
由因子分解定理知,
9. 设随机变量\服从柯西分布, 其密度函数为
试证:
当
时, 有
【答案】对任意的即
结论得证.
为充分统计量.
(此时要求
(此时要
求否则方差不存在).
否则均值不存在), 当r=2
中抽取的简单样本,
试证
第 4 页,共 46 页
相关内容
相关标签