2018年华北理工大学生命科学学院905概率论和数理统计考研基础五套测试题
● 摘要
一、证明题
1. 设连续随机变量X 服从柯西分布,其密度函数如下:
其中参数
(1)试证X 的特征函数为(2)当(3)若
【答案】(1)因为
时,记Y=X, 试证
相互独立,且服从同一柯西分布,试证:
的密度函数为
y 的特征函数为
下证柯西分布的可加性,设若
与
相互独立,则
这正是参数为为
(2)当所以
由于
当然X 与Y 不独立.
不能推得X 与Y 独立. 的柯西分布,则特征函数为
由相互独立
此题说明,由
(3)设
都服从参数为性得:
即
2. 证明:若明:
的特征函数为
的柯西分布.
时有
的柯西分布的特征函数,所以由唯一性定理知,
服从参数
由此得服从参数为
的特征函数
的柯西分布,其密度函数为
常记为
且利用此结果证明柯西分布的可加性;
但是X 与Y 不独立;
与
同分布.
与具有相同的特征函数,由唯一性定理知它们具有相同的分布. 与
是未知参数
的两个UMVUE , 则
依概率几乎处处成立. 这个命题表
的UMVUE 在几乎处处的意义下是唯一的. 【答案】首先指出
是0的无偏估计,则已知
于是
几乎处处成立.
由此立即可得几乎处处成立,即
3. 设连续随机变量X 的分布函数为F (x ),且数学期望存在,证明:
【答案】
将第一个积分改写为二次积分,然后改变积分次序,得
第二个积分亦可改写为二次积分,然后改变积分次序,可得
这两个积分之和恰好是所要求证明的等式.
4. 证明下列事件的运算公式:
(1)(2)
【答案】(1)右边=(2)利用(1)
有
=左边. , 所以
在区间
上服从均匀分布.
代入函数
5. 假设随机变量X 服从参数为2的指数分布. 证明:
【答案】随机变量X 服从参数为2的指数分布, 则X 的概率密度为求得到所以当当
的分布, 关键是确定分段点. 将X 的概率密度函数的分段点同时利用函数
的图形知它的最大值是
是不可能事件, 所以
是Y 的分布函数的分段点. 时, 时, 则
下面求Y 的分布函数
当
时,
综上所述, 得到Y 的分布函数为上式恰好是区间即证明了
6. 设随机变量X 服从参数为p 的几何分布,试证明:
【答案】
7. 设A ,B ,C 为三个事件 ,且
上服从均匀分布的随机变量的分布函数, 在区间(0, 1)上服从均匀分布.
.
证明:【答案】由所以得
8. 证明公式
【答案】为证明此公式,可以对积分部分施行分部积分法,更加简单的方法是对等号两边分别关于p 求导,证明其导函数相等.
注意到将等式右边的求导可给出
而对
对
得
. 进一步由
得
.
又因为
,