当前位置:问答库>考研试题

2016年东北师范大学生命科学学院高等数学(跨学科加试)复试笔试仿真模拟题

  摘要

一、计算题

1. 求下列函数的最大值、最小值:

【答案】(l )函数在令

, 得驻点

上可导, 且, 比较, 最小值为上可导, 且上可导, 且,

比较

的单调性

仅在

时成立, 因此函数

在[0, 2π]

,

得函数的最大值为

,

得函数的最大值为(2)函数在(3)函数在令最小值为

2. 判定函数

【答案】

,

得驻点

上单调增加。

3. 应用对参数的微分法,计算下列积分:

【答案】(1)设

由于

于是

(2)设

,由于

又当α=1时,有

因此于是

4. 已知

【答案】因为

于是

在x=1处连续,从而对任一在区间(或)上连续。

,求当时,的值。

5. 求旋转椭球面

【答案】令

上点 处的切平面与XOY 面的夹角的余弦。

,曲面的法向量为

曲面在点

,记

处的法向量为与

的夹角为

,则所求的余弦值为

面的法向量为

6. 计算下列极限:

(1)(2)(3)(4)【答案】(1)(2)(3)(4)

(k 为正整数)。

二、证明题

7. 试对曲面

【答案】按右手法则,取上侧,的边界为圆周逆时针方向。

验证斯托克斯公式。

从z 轴正向看去,取

的参数方程可取为

t 从0变到2π,故