2017年重庆师范大学数学学院829高等代数考研冲刺密押题
● 摘要
一、选择题
1. 下面哪一种变换是线性变换( )
.
【答案】C
【解析】
,而
不一定是线性变换,
比如
不是惟一的.
分别为A ,B 的伴随矩阵,
.
则
也不是线性变换,
比如给
2. 设A 为n 阶可逆矩阵,交换A 的第1行与第2行得B ,则有( ).
A. 交换A*的第1列与第2列得B* B. 交换A*的第1行与第2行得B* C. 交换A*龙第1列与第2列得-B* D. 交换A*的第1行与第2行得-B* 【答案】C
【解析】解法1:题设P (1, 2)A=B,所以有
又
所以有
即A*右乘初等阵P (1,2)得-B*
解法2:题设P (1,2)A=B,所以丨B 丨=-丨A 丨. 因此
即
3. 设A 、B 均为2阶矩阵,A*,B*分别为A 、B 的伴随矩阵. 如果阵
A. B. C. D. 【答案】B 【解析】由题设
可逆,由于
的伴随矩阵为( ).
则分块矩
且
所以
4. 设
A. 合同且相似 B. 合同但不相似 C. 不合同但相似 D. 不合同不相似 【答案】A
则A 与B ( ).
,
【解析】因为A ,B 都是实对称阵,且B 有4个特征值
又因为即A 也有4个特征值0,0,0,4. 因而存在正交阵
其中
故A 〜B.
再由
是正交阵,知T 也是正交阵,从而有
使
且由①式得
因此A 与B 合同.
5. 设A ,B 为同阶可逆矩阵,则( ).
A.AB=BA
B. 存在可逆阵P ,使C. 存在可逆阵C 使【答案】D 【解析】
D. 存在可逆阵P ,Q ,使PAQ=B
二、分析计算题
6. 证明:矩阵
【答案】由于即A 的最小多项式为
7. 求矩阵X. 设
(1)
不能用相似变换对角化.
有一个一阶子式为非零常数,因此有
它有重根,所以A 不能对角化.
(2)
(3)
(4)【答案】(1)
得
相关内容
相关标签