当前位置:问答库>考研试题

2017年兰州财经大学统计学院432统计学[专业硕士]之概率论与数理统计教程考研冲刺密押题

  摘要

一、证明题

1. 设总体X 的分布函数F (x )是连续的,

试证:

(1)(2)

(3)和的协方差矩阵为

其中

成立.

且是来自均匀分布U (0, 1)总体的次序统计量:

为取自此总体的次序统计量,

【答案】(1)由分布函数F (x )的单调性可知, (0, 1)总体的次序统计量;

(2)是来自均匀分布U (0, 1)总体的次序统计量, 所以, 故

(3)和的联合分布函数为:

又由分布函数F (x )的连续性可知, F (X )服从均匀分布U (0, 1), 故而^是来自均匀分布U

所以,

结合(2)可知, 和的协方差矩阵为:

2 设分别自总体.

试证,对于任意常数a , b (a+b=l),达到最小.

【答案】由已知条件有

独立. 于是

这证明了又

是的无偏估计.

从而

因而当

时,V ar (Z )达到最小,此时

这个结果表明,对来自方差相等(不论均值是否相等)的两个正态总体的容量为本,上述是

3. 设

的线性无偏估计类是来自

中方差最小的.

的样

该无偏估计为

中抽取容量为,的两独立样本其样本方差分别为

都是的无偏估计,并确定常数a , b 使Var (Z )

若检验由拒绝域为

的样本,考虑如下假设检验问题

确定.

,n 最小应取多少?

(1)当n=20时求检验犯两类错误的概率; (2)如果要使得检验犯第二类错误的概率(3)证明:当

时,

【答案】(1)由定义知,犯第一类错误的概率为

这是因为在成立下,

而犯第二类错误的概率为

这是因为在成立下.

.

(2)若使犯第二类错误的概率满足

,或

,查表得:

由此给出

因而凡

最小应取34, 才能使检验犯第二类错误的概率

(3)在样本量为n 时,检验犯第一类错误的概率为

时.

,即

检验犯第二类错误的概率为

时,

才可实现,这一结论在一般场

注:从这个例子可以看出,要使得与都趋于0, 必须

合仍成立,即要使得与同时很小,必须样本量n 很大. 由于样本量n 很大在实际中常常是不可行的,故一般情况下人们不应要求与同时很小.

4. 设A ,B ,C 为三个事件,且P (A )=a,P (B )=2a,P (C )=3a,P (AB )=P(AC )=P(BC )=b.证明

【答案】由又因为所以得

5. 设随机变量

(1)(2)

【答案】(1)设所以当即

时,

的密度函数为

即(2)因为以

进一步由与

相互独立, 且都服从(0, 1)上的均匀分布, 试证明:

的密度函数为

所以

是相互独立的标准正态随机变量.

时,

, 所以

又因为