当前位置:问答库>考研试题

2017年中国人民大学信息学院828高等代数考研冲刺密押题

  摘要

一、选择题

1.

设次型.

A. B. C. D. 【答案】D

【解析】方法1 用排除法令

这时f (l ,1,1)=0,即f 不是正定的. 从而否定A ,B ,C. 方法2

所以当方法3 设

时,f 为正定二次型.

对应的矩阵为A ,则

A 的3个顺序主子式为

所以当方法4令

时,A 的3个顺序主子式都大于0,则,为正定二次型,故选(D ). 为任意实数

不等于0

为非正实数

不等于-1

则当( )时,此时二次型为正定二

所以f 为正定的.

2. 设A 为3阶矩阵,将A 的第2行加到第1行得8, 再将B 的第1列的一1倍加到第2列得C ,

A. B. C. D.

【答案】B

则( ).

【解析】由已知,有

于是

3. 设

是非齐次线性方程组

的两个不同解,

则Ax=b的通解为( )•

【答案】B 【解析】因为中

不一定线性无关. 而

由于故

因此

线性无关,且都是

的基础解系,

为任意常数,

所以

因此

不是

的特解,从而否定A , C.但D

的解. 是

的特解,因此选B.

的基础解系. 又由

4. 设A 、B 为满足AB=0的任意两个非零矩阵. 则必有( ).

A.A 的列向量组线性相关,B 的行向量组线性相关 B.A 的列向量组线性相关,B 的列向量组线性相关 C.A 的行向量组线性相关,B 的行向量组线性相关 D.A 的列向量组线性相关,B 的列向量组线性相关 【答案】A 【解析】方法1:设由于

又由方法2:设考虑到

不妨设线性相关.

由已知及以上证明知B ’的列线性相关,即B 的行向量组线性相关.

由于AB=0, 所以有

即r (A )>0, r (B )>0, 所以有

R (A )

故A 的列向量组及B 的行向量组均线性相关.

5. 设A 为4×3矩阵,是非齐次线性方程组常数,则

的通解为( )

【答案】C 【解析】由

于又显然有基础解系.

考虑到

的一个特解,所以选C.

(否则与

是非齐次线性方程

组,所以有解矛盾)

的三个线性无关的解,所

以从而

的一个

是对应齐次线性方程组

的两个线性无关的解.

并记A 各列依次为

由于AB=0可推得AB 的第一列

从而

的3个线性无关的解,为任意

二、分析计算题

6. 设A 是n 级实对称矩阵,且

证明:存在正交矩阵T 使得

【答案】因为A 是实对称矩阵,所以它的特征值都是实数. 设是A 的一个特征值,由因