2017年中国人民大学信息学院828高等代数考研冲刺密押题
● 摘要
一、选择题
1.
设次型.
A. B. C. D. 【答案】D
【解析】方法1 用排除法令
则
这时f (l ,1,1)=0,即f 不是正定的. 从而否定A ,B ,C. 方法2
所以当方法3 设
时,f 为正定二次型.
对应的矩阵为A ,则
A 的3个顺序主子式为
所以当方法4令
时,A 的3个顺序主子式都大于0,则,为正定二次型,故选(D ). 为任意实数
不等于0
为非正实数
不等于-1
则当( )时,此时二次型为正定二
所以f 为正定的.
2. 设A 为3阶矩阵,将A 的第2行加到第1行得8, 再将B 的第1列的一1倍加到第2列得C ,
记
A. B. C. D.
【答案】B
则( ).
【解析】由已知,有
于是
3. 设
是非齐次线性方程组
的两个不同解,
是
则Ax=b的通解为( )•
【答案】B 【解析】因为中
不一定线性无关. 而
由于故
是
因此
线性无关,且都是
知
的基础解系,
为任意常数,
所以
因此
不是
的特解,从而否定A , C.但D
的解. 是
的特解,因此选B.
的基础解系. 又由
4. 设A 、B 为满足AB=0的任意两个非零矩阵. 则必有( ).
A.A 的列向量组线性相关,B 的行向量组线性相关 B.A 的列向量组线性相关,B 的列向量组线性相关 C.A 的行向量组线性相关,B 的行向量组线性相关 D.A 的列向量组线性相关,B 的列向量组线性相关 【答案】A 【解析】方法1:设由于
又由方法2:设考虑到
不妨设线性相关.
由已知及以上证明知B ’的列线性相关,即B 的行向量组线性相关.
由于AB=0, 所以有
即r (A )>0, r (B )>0, 所以有
R (A ) 故A 的列向量组及B 的行向量组均线性相关. 5. 设A 为4×3矩阵,是非齐次线性方程组常数,则 的通解为( ) 【答案】C 【解析】由 于又显然有基础解系. 考虑到 是 的一个特解,所以选C. (否则与 是非齐次线性方程 组,所以有解矛盾) 的三个线性无关的解,所 以从而 是 的一个 是对应齐次线性方程组 的两个线性无关的解. 并记A 各列依次为 由于AB=0可推得AB 的第一列 从而 的3个线性无关的解,为任意 二、分析计算题 6. 设A 是n 级实对称矩阵,且 证明:存在正交矩阵T 使得 【答案】因为A 是实对称矩阵,所以它的特征值都是实数. 设是A 的一个特征值,由因 得
相关内容
相关标签