当前位置:问答库>考研试题

2018年湖南大学经济与贸易学院396经济类联考综合能力[专业硕士]之概率论与数理统计考研仿真模拟五套题

  摘要

一、计算题

1. 求下列分布函数的特征函数,并由特征函数求其数学期望和方差.

(1)(2)

【答案】(1)因为此分布的密度函数为所以此分布的特征函数为

又因为

所以

(2)因为此分布的密度函数为所以此分布的特征函数为又因为当所以当而当又因为

时,有时,有时,有在

所以

处不可导,故此分布(柯西分布)的数学期望不存在.

2. 有两个班级同时上一门课,甲班有25人,乙班有64人. 该门课程期末考试平均成绩为78分,标准差为14分. 试问:甲班的平均成绩超过80分的概率大、还是乙班的平均成绩超过80分的概率大?

【答案】

因为

为甲班第i 个学生的成绩

为乙班第个学生的成绩

所以由林德伯格-莱维中心极限定理,

甲班平均成绩超过80分的概率为

同理可计算乙班平均成绩超过80分的概率为

所以甲班的平均成绩超过80分的概率大.

3. 某合金钢的抗拉强度y 与碳含量x 有关,现有92炉钢样数据,从中算得

试用两个标准分别建立一元回归方程.

【答案】 (1)用残差平方和最小的标准,可得两回归系数为

(2)用到回归直线垂直距离平方和最小的标准,可得两回归系数为

比较两种标准下的结果,可见与之间相差较大,这是因其相关系数r=0.8902与1有较大差距.

4. 在一批灯泡中抽取300只作寿命试验,其结果如下:

在显著性水平为0.05下能否认为灯泡寿命服从指数分布【答案】这是一个检验总体是否服从指数分布

本题中总体分成4类,在原假设成立下,每类出现的概率及

?

的假设检验问题.

分别为

因而,检验的统计量为

这里k=4, 检验拒绝域为由于服从指数分布

,若取

,则

.

未落入拒绝域,故不拒绝原假设,在显著性水平为0.05下可以认为灯泡寿命

此处检验的p 值为

5. 在检查了一个车间生产的20个轴承外座圈的内径后得到下面数据(单位:mm ):

15.04 15.36 14.57 14.53 15.57 14.69 15.37 14.66 14.52 15.41 15.34 14.28 15.01 14.76 14.38 15.87 13.66 14.97 15.29 14.95 (1)作正态概率图,并作初步判断;

(2)请用W 检验方法检验这组数据是否来自正态分布

.

具体数据为

【答案】 (1)a.首先将数据按从小到大的顺序排列:

13.66 14.28 14.38 14.52 14.53 14.57 14.66 14.69 14.76 14.95 14.97 15.01 15.04 15.29 15.34 15.36 15.37 15.41 15.57 15.87 b. 对每一个i ,计算修正频率,结果见表:

1

c. 将点.

得到内径数据的概率图正态

逐一描在正态概率图上(利用软件) , 置信区间

d. 观察上述点的分布,可以判断上述20个点基本在一直线附近. (2)W检验. 由数据可算得为计算方便,建立如下表格

表2