当前位置:问答库>考研试题

2017年东北师范大学数学与统计学院432统计学[专业硕士]之概率论与数理统计考研仿真模拟题

  摘要

一、证明题

1. 设随机变量量.

【答案】

, 两边取对数, 并将

所以

正是

的特征函数, 由特征函数的唯一性定理及判断弱

, 则由X 的特征函数

..

展开为级数形式, 可得

, 证明:当

时, 随机变量

按分布收敛于标准正态变

收敛的方法知结论成立.

2. 同时掷5枚骰子,试证明:

(1)P (每枚都不一样)=0.0926; (2)P (一对)=0.4630; (3)P (两对)=0.2315; (4)P (三枚一样)=0_1543; (5)P (四枚一样)=0.0193; (6)P (五枚一样)=0.0008. 【答案】同时掷5枚骰子共有(1)

2枚组成“一对”,共有以

(3)先将5枚骰子分成三组,其中二组各有2枚殷子,另外一组只有一枚殷子,又考虑到各有2枚骰子的二组内是不用考虑顺序的,所以5枚骰子分成三组共有而这三组骰子出现的点数都不一样有

种可能,所以所求概率为

种分法,

个样本点,这是分母,以下分别求之.

种取法,然后这“一对”骰子与剩下的3枚骰子出现的点数都不一样,所

(2)这里“一对”是指这一对以外的3枚骰子中不成对且不全相同,所以先从5枚骰子中任取

(4)这里“三枚一样”是指这三枚以外的2枚骰子不成对,所以先从5枚骰子中任取3枚组成一组,共有(53)种取法,然后这一组骰子与剩下的2枚骰子出现的点数不一样,所以

(5)先从5枚骰子中任取4枚组成一组,然后这一组骰子与剩下的一枚骰子各取不同的数,由此得

(6)五枚骰子出现的点数全部一样共有6种情况,所以

3. 如果

【答案】对任意的

试证:首先考虑

的分布函数

因此

其中

为X 的分布函数, 类似有

因此

由上述两个关系式, 再考虑到的任意性,

即可得这就意味着

证毕.

4. 设X 为仅取非负整数的离散随机变量,若其数学期望存在,证明:

(1)(2)

【答案】(1)由于

存在,所以该级数绝对收敛,从而有

(2)

5. 试用特征函数的方法证明/分布的可加性:若随机变量

【答案】因为

所以由X 与Y 的独立性得这正是

分布

的特征函数, 由唯一性定理知

6. 在回归分析计算中,常对数据进行变换:

其中

平方和之间的关系;

(2)证明:由原始数据和变换后数据得到的F 检验统计量的值保持不变. 【答案】(1)经变换后,各平方和的表达式如下:

所以由原始数据和变换后数据得到的最小二乘估计间的关系为

在实际应用中,人们往往先由变换后的数据求出

然后再据此给出

总平方和、回归平方和以及残差平方和分别为

, 且X 与Y 独立,

是适当选取的常数.

(1)试建立由原始数据和变换后数据得到的最小二乘估计、总平方和、回归平方和以及残差

它们的关系为