当前位置:问答库>考研试题

2018年西北农林科技大学理学院314数学(农)之工程数学—线性代数考研核心题库

  摘要

一、解答题

1. 设二次

(Ⅰ)用正交变换化二次型(Ⅱ

)求【答案】

(Ⅰ)由

知,矩阵B 的列向量是齐次方程组Ax=0的解向量.

为标准形,并写出所用正交变换;

矩阵A 满足AB=0, 其

值(至少是二重)

根据

值是0, 0, 6.

正交化,

令的特征向量为

则是

的线性无关的特征向量.

由此可知

,是矩阵A 的特征

故知矩阵A

有特征值因此,矩阵A 的特征

那么由实对称矩阵不同特征值的特征向量相互正交,

解出

再对,单位化,得

那么经坐标变换

二次型化为标准形(Ⅱ)因为

所以由

进而

有唯一解. 证明:

矩阵为A 的转置矩阵).

有惟一解知

则方程组

. 即

即有逆

且A 可对角化,

求行列式

可逆.

其中E 是n 阶单位矩阵. 易知

于是方程组

只有零解.

使

.

只有零

有非零解,这与

有非零解,即存在

为可逆矩阵,

且方程组

于是

2. 设A

的解为【答案】

利用反证法,

假设以有

解矛盾,故假设不成立,

.

3. 设B

(I

)证明(II

)证明(III

)若【答案】⑴

矩阵

矩阵

(II )

(Ⅲ)设

则由

或1. 又存在可逆矩阵p ,

使或1.

4.

设矩阵求一个秩为2的方阵B. 使

【答案】

取.

进而解得的另一解为则有

.

的基础解系为:

方阵B 满足题意.

二、计算题

5. 按自然数从小到大为标准次序,求下列各排列的逆序数:

(1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (4)2 4 1 3;

(5)1 3... (2n-1) 2 4 ... (2n ); (6)1 3... (2n-1) (2n ) (2n-2)... 2. 【答案】(1)此排列为自然排列,其逆序数为0;

(2)此排列的首位元素的逆序数为0; 第2位元素1的逆序数为1; 第3位元素3的逆序数为1; 末位元素2的逆序数为2, 故它的逆序数为0+1+1+2=4;

(3)此排列的前两位元素的逆序数均为0; 第3位元素2的逆序数为2; 末位元素1的逆序数为3, 故它的逆序数为0+0+2+3=5;

(4)类似于上面,此排列的从首位元素到末位元素的逆序数依次为0, 0, 2, 1,故它的逆序数为0+0+2+1=3;

(5)注意到这2n 个数的排列中,前n 位元素之间没有逆序对. 第n+l位元素2与它前面的n-l 个数构成逆序对,故它的逆序数为n-l :同理,第n+2倍元素4的逆序数为n-2;; 末位元素2n 的逆序数为0.

故此排列的逆序数为

(6)与(5)相仿,此排列的前n+1位元素没有逆序对;第n+2位元素(2n-2)的逆序数为2; 第n+3位元素2n-4与它前面的2n-3,2n-l , 2n ,2n-2构成逆序对,故它的逆序为4; …;末位元素2的逆序数为2(n-l ), 故此排列的逆序数为2+4+…+2(n-1)=n(n-l ).