2018年西北农林科技大学理学院314数学(农)之工程数学—线性代数考研仿真模拟五套题
● 摘要
一、解答题
1.
设矩阵.
【答案】
求A 的特征值,并讨论A 是否可对角化? 若A 可对角化,则写出其对角
于是A 的3
个特征值为(Ⅰ)当
且
时,A 有3个不同特征值,故4可对角化,且可对角化为
(Ⅱ)当a=0时
,
此时A 有二重特征值1,
仅对
应1个线性无关的特征向量,故此时A 不可对角化.
(Ⅲ)
当
时
,
此时
A
有二重特征
值
而
仅对应1个线性无关的特征向量,故此时A 不可对角化.
2. 设二次
型
(Ⅰ)用正交变换化二次型(Ⅱ
)求【答案】
(Ⅰ)由
矩阵A 满足AB=0, 其
中
为标准形,并写出所用正交变换;
知,矩阵B 的列向量是齐次方程组Ax=0的解向量.
记
值(至少是二重)
,
根据
值是0, 0, 6.
设
有
对
正交化,
令的特征向量为
有
则是
的线性无关的特征向量.
由此可知
,是矩阵A 的特征
故知矩阵A
有特征值因此,矩阵A 的特征
那么由实对称矩阵不同特征值的特征向量相互正交,
则
解出
再对,单位化,得
那么经坐标变换
即
二次型化为标准形(Ⅱ)因为
又
有
所以由
进而
得
于是
3. 设B
是
(I
)证明(II
)证明(III
)若【答案】⑴
矩阵
逆其中E 是n 阶单位矩阵.
且A 可对角化,
求行列式
(II )
(Ⅲ)设
则由
知
即
或1. 又存在可逆矩阵p ,
使或1.
4. 设三阶方阵A 、B
满足式
的值.
其中E 为三阶单位矩阵.
若
求行列
【答案】
由矩阵
知则
. 可
逆.
又
故
即
所以
即
而
故
二、计算题
相关内容
相关标签