2018年上海理工大学管理学院811概率论与数理统计考研仿真模拟五套题
● 摘要
一、证明题
1. 设随机变量X 服从负二项分布,其概率分布为
证明其成功概率p 共轭先验分布族为贝塔分布族. 【答案】取成功概率p 先验分布为所以,
,则
与的联合分布为
即成功概率p 的后验分布为塔分布族.
2. 证明:若
,故成功概率p 的共轭先验分布族为贝
则对有
并由此写出
与
其
中
【答案】由t 变量的结构知,t 变量可表示
为
且U 与V 独立,从而有
由于
将两者代回可知,在
时,若r 为奇数,则
若r 为偶数,则
证明完成. 进一步,当当
时,
,证明:
;
3. 对于组合数
(1)(2)(3)(4)(5)(6)
【答案】(1)等式两边用组合数公式展开即可得证. (2)因为
(3)因为
(4)因为
所以
(5)设计如下一个抽样模型:一批产品共有a+b个,其中a 个是不合格品,b 个是合格品,从中随机取出n 个,
则事件=“取出的n 个产品中有k 个不合格品”的概率为
由诸互不相容,且
得
时,(此时要求(此时要求
否则均值不存在), 否则方差不存在).
把分母移至另一侧即得结论.
注:还有另一种证法:下述等式两端分别展开
可得
比较上式两端的系数即可得
(6)在(5)中令
,则得
再利用(1)的结果即可得证.
4. 设
是来自
的样本,
为其次序统计量,令
证明【答案】令作变换
相互独立.
则
的联合密度函数为
其中
联合密度函数为
其雅可比行列式绝对值为
该联合密度函数为可分离变量,因而相互独立,且
5. 试用特征函数的方法证明二项分布的可加性:若随机变量独立, 则
【答案】记这正是二项分布
因为
的特征函数,由唯一性定理知
且X 与Y
所以由X 与Y 的独立性得
相关内容
相关标签