2017年昆明理工大学F009概率论和数理统计复试仿真模拟三套题
● 摘要
一、计算题
1. 某单位调查了520名中年以上的脑力劳动者,其中136人有高血压史,另外384人则无,在有高血压史的136人中,经诊断冠心病及可疑者有48人,在无高血压史的384人中,经诊断为冠心病及可疑者的有36人. 从这个资料,对高血压与冠心病有无关联做检验,取
表示
【答案】该题完全类似于上题. 用A 表示有无高血压,它有两个水平:表示有高血压史,表示无高血压史,用B 表示诊断结果,它也有两个水平:表示诊断为冠心病及可疑者,诊断结果正常. 则由已知得下表:
表
高血压与冠心病无关联,即A 与B 是独立的. 统计表示如下:
此列联表独立性检验的统计量可以表示成
检验的假设为
此处
此处观测值远远超过临界值,故拒绝原假
设,即认为高血压与冠心病有关系. 此处的P 值为
2. 在遗传学研宄中经常要从截尾二项分布中抽样,其总体概率函数为
若已知m=2
,
是样本,试求p 的最大似然估计.
的样本中有个为1,
有
【答案】当m=2时,该截尾二项分布只能取1与2, 不妨设个为2,则其似然函数为(忽略常数)
对数似然函数为
将对数似然函数关于p 求导并令其为0得到似然方程
解之得
后一个等式是由于
所以
代入上式即得.
3. 从一批电子元件中抽取8个进行寿命测试,得到如下数据(单位:h ):
1050,1100,1130,1040,1250,1300, 1200,1080
试对这批元件的平均寿命以及寿命分布的标准差给出矩估计.
【答案】样本均值样本标准差
因此,元件的平均寿命和寿命分布的标准差的矩估计分别为1143.75和96.0562.
4. 设
是来自均匀分布
与
的一个样本,寻求α与β的无偏估计. 可分别用来估计
但它们都不是无偏估计,
【答案】容易看出,这是因为均匀分布
的分布函数与密度函数分别为
由此可导出次序统计量与的密度函数分别为
从而可分别求出它们的期望
这表明:
与
不是α与β的无偏估计,但做恰当修正后,可获得α与β的无偏估计. 把(*)
或
再使用加减消去法,即可得
与(**)两式相加与相减可得
的无偏估计分别为
5. 某箱装100件产品, 其中一、二和三等品分别为80, 10和10件. 现从中随机取一件, 定义三个随机变量
如下
试求随机变量【答案】因为
和
的相关系数
所以有
由多项分布可导出
的联合分布列如下
表
1
譬如,
表
2
所以
由此得
6. 设
来自伽玛分布族
的一个样本, 寻求
的充分统计量.
由此获得乘积
的分布列
【答案】样本的联合密度函数为:
由因子分解定理,
或
是充分统计量.
7. 某建筑工地每天发生事故数的现场记录如下:
表
1
试在显著性水平
下检验这批数据是否服从泊松分布.
【答案】本题与上题完全类似,仍为检验总体是否服从泊松分布的分布拟合检验问题. 由于有几类的观测个数偏少,为使用近似分布,需要把后面四类合并为一类. 于是我们把总体分成4类,在原假设下,每类出现的概率为:
未知参数采用最大似然估计得: