2017年华北理工大学理学院823高等代数考研强化模拟题
● 摘要
一、选择题
1. 设
A. 若B. 若C. 若D. 若【答案】A 【解析】因为当否则有
由上述知因此 2. 设
线性相关,所以线性相关,故选A.
则3条直线
(其中
【答案】D 【解析】令其中
则方程组①可改写为
则3条直线交于一点
线性无关,由秩
线性表出.
方程组①有惟一解
)交于一点的充要条件是( )
.
于是
线性无关时,若秩
线性相关. 由此可否定C ,D. 又由
则
线性无关,
均为n 维列向量,A 是线性相关,则线性相关,则线性无关,则线性无关,则
矩阵,下列选项正确的是( ). 线性相关. 线性无关. 线性相关. 线性无关.
由秩A=2, 可知可由
可知线性相关,即可由线性表出,
从而
线性相关,故选D.
3. 设A 为n 阶可逆矩阵,交换A 的第1行与第2行得B ,则有( ).
A. 交换A*的第1列与第2列得B* B. 交换A*的第1行与第2行得B* C. 交换A*龙第1列与第2列得-B* D. 交换A*的第1行与第2行得-B* 【答案】C
【解析】解法1:题设P (1, 2)A=B,所以有
又
所以有
即A*右乘初等阵P (1,2)得-B*
解法2:题设P (1,2)A=B,所以丨B 丨=-丨A 丨. 因此
分别为A ,B 的伴随矩阵,
即
则当( )时,此时二次型为正定二
为任意实数 不等于0 为非正实数 不等于-1
则
这时f (l ,1,1)=0,即f 不是正定的. 从而否定A ,B ,C. 方法2
所以当方法3 设
时,f 为正定二次型.
对应的矩阵为A ,则
4. 设次型.
A. B. C. D. 【答案】D
【解析】方法1 用排除法令
A 的3个顺序主子式为
所以当方法4令
时,A 的3个顺序主子式都大于0,则,为正定二次型,故选(D ).
所以f 为正定的.
5. 设线性方程组的解都是线性方程组
【答案】(C ) 【解析】设即证秩
的解空间分别为
则
所以
的解,则( )。
二、分析计算题
6. 按定义计算行列式:
(1 )
(2)
相关内容
相关标签