2018年西安交通大学经济与金融学院432统计学[专业硕士]考研核心题库
● 摘要
一、简答题
1. 给出在一元线性回归中:
(1)相关系数的定义和直观意义;
(2)判定系数的定义和直观意义;
(3)相关系数和判定系数的关系。
【答案】(1)相关系数是根据样本数据计算的度量两个变量之间线性关系强度的统计量。若相关系数是根据总体全部数据计算的,称为总体相关系数,记为
称为样本相关系数,记为r 。样本
相关系数的计算公式为:
按上述计算公式计算的相关系数也称为线性相关系数,或称为相关系数。r 仅仅是x 若是根据样本数据计算的,则与y 之间线性关系的一个度量,它不能用于描述非线性关系。这意味着,r=0只表示两个变量之间不存在线性相关关系,并不说明变量之间没有任何关系,它们之间可能存在非线性相关关系。变量之间的非线性相关程度较大时,就可能会导致r=0。因此,当r=0或很小时,不能轻易得出两个变量之间不存在相关关系的结论,而应结合散点图做出合理的答释。
(2)回归平方和占总平方和的比例称为判定系数,记为其计算公式为:
判定系数测度了回归直线对观测数据的拟合程度。
的取值范围是越接近于1, 表明回归平方和占总平方和的比例越大,回归直线与各观测点越接近,用x 的变化来答释y 值变
差的部分就越多,回归直线的拟合程度就越好;反之,越接近于0, 回归直线的拟合程度就越差。
(3)相关系数和判定系数都是用来表明X 与Y 的关系,即X 对Y 的拟合程度。在一元线性回归中,相关系数实际上是判定系数的平方根。相关系数取值范围在卜之间。判定系数取值范围在[0, 1]之间。
2. 简述统计分组的原则。
【答案】采用组距分组时,需要遵循不重不漏的原则。不重是指一项数据只能分在其中的某一组,不能在其他组 中重复出现;不漏是指组别能够穷尽。即在所分的全部组别中每项数据都能
分在其中的某一组,不能遗漏。
为解决不重的问题,统计分组时习惯上规定“上组限不在内”。即当相邻两组的上下限重叠时,恰好等于某 一组上限的变量值不算在本组内,而计算在下一组内。而对于连续变量,可以采取相邻两组组限重叠的方法,根 据“上组限不在内”的规定解决不重的问题,也可以对一个组的上限值采用小数点的形式,小数点的位数根据所 要求的精度具体确定。
3. 欲调查广州市初中学生的身高情况,随机抽取100名广州市初中学生,测量了身高。
(1)用此例说明这几个统计概念,总体(population ), 样本(sample ), 参数(pammeter ), 统计量(statistics )。
(2)请说明如何对这100例身高数据进行描述性统计分析。
【答案】(1)总体(population )是包含所研宄的全部个体(数据)的集合,它通常由所研宄的一些个体组成。 本例中的总体是广州市所有初中学生。
样本(sample )是从总体中抽取的一部分元素的集合,构成样本的元素的数目称为样本量(sample size)。 本例中的样本是随机抽取的100名广州市初中学生,其中样本量为100。
参数(parameter )是用来描述总体特征的概括性数字度量,它是研究者想要了解的总体的某种特征值。本 例中广州市所有初中学生的平均身高即是一个参数。
统计量(statistic )是用来描述样本特征的概括性数字度量。它是根据样本数据计算出来的一个量,由于 抽样是随机的,因此统计量是样本的函数。随机抽取的100名广州市初中学生的平均身高即是一个统计量。
(2)所谓描述性统计分析,就是对一组数据的各种特征进行分析,以便于描述测量样本的各种特征及其所 代表的总体的特征。主要包括集中趋势的描述,可计算身高的均值,中位数和众数,也可采用箱线图直观的反映 数据的集中趋势以及是否存在异常值;离散程度的描述,可计算身高的方差,变异系数,四分位差或极差,也可 采用折线图或散点图等直观反映数据的离散程度;分布的偏态与峰度描述,可计算偏度和峰度值,或采用茎叶图 或直方图直观的反映分布是否与正态分布或单峰偏态分布逼近。
4. 二项分布与超几何分布的适用场合有什么不同?它们的均值和方差有什么区别?
【答案】(1)从理论上讲,二项分布只适合于重复抽样(即从总体中抽出一个个体观察完后放回总体,然后再抽下一个个体)。但在实际抽样中,很少采用重复抽样。不过,当总体的元素数目况很大而样本量, 相对于AT 来说很小时,二项分布仍然适用。
但如果是采用不重复抽样,各次试验并不独立,成功的概率也互不相等,而且总体元素的数目很小或样本量 «相对于W 来说较大时,二项分布就不再适用,这时,样本中“成功”的次数则服从超几何概率分布。
(2)若X 服从二项分布则
若Y 服从超几何分布则
5. 利用相关系数如何判断变量之间相关的方向和相关关系的密切程度?
【答案】相关系数r 的取值范围在之间。若
表明变量
关关系;若
相关关系;若
相关关系。
当
说明两个变量之间的线性关系越强
时. 可视为中度相关;表明x 与y 之间存在负线性相关关系;若表明x 与y 之间为完全负线性相关关系。可见当之间存在正线性相表明x 与y 之间为完全正线性时,y 的取值完全依赖于X ,二者之间即为函数关系;当r=0时,说明两者之间不存在线性相关关系,但可能存在其他非线性说明两个变量之间的线性关系越弱。对于一时,
可视为高度相关时,说明两个变量之间的个具体的r 取值,根据经验可将相关程度分为以下几种情况:
当时。视为低度相关;
当
相关程度极弱,可视为不相关。但这种解释必须建立在对相关系数的显著性检验的基础之上。
6. 正态分布所描述的随机现象有什么特点?为什么许多随机现象服从或近似服从正态分布?
【答案】(1)正态分布所描述的随机现象具有如下特点: ①正态曲线的图形是关于的对称钟形曲线,且峰值在处;
②正态分布的两个参数均值和标准差一旦确定,正态分布的具体形式也就唯一确定,不同参数取值的 正态分布构成一个完整的“正态分布族”。
③正态分布的均值可以是实数轴上的任意数值,它决定正态曲线的具体位置,标准差相同而均值不同 的正态曲线在坐标轴上体现为水平位移。 ④正态分布的标准差
⑤当为大于零的实数,它决定正态曲线的“陡_”或“扁平”程度。越大,正态曲线 越扁平;越小,正态曲线越陡峭。 的取值向横轴左右两个方向无限延伸时,正态曲线的左右两个尾端也无限渐近横轴,但理论上永远不会与之相父。
⑥与其他连续型随机变量相同,正态随机变量在特定区间上的取值概率由正态曲线下的面积给出,而且其曲线下的总面积等于1。
(2)如果原有总体是正态分布,那么,无论样本量的大小,样本均值的抽样分布都服从正态分布。若原有 总体的分布是非正态分布,随着样本量的增大(通常要求
方差为总体方差的),不论原来的总体是否服从正态分布,样本均值的抽样分布都将趋于正态分布,其分布的数学期望为总体均值这就是统计上著名的中心极限定理。因此许多随机现象服从或近似服从正态分布。
7. 单因素方差分析的实质是什么?并说明单因素方差分析的步骤。
相关内容
相关标签